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Abstract 

The highly efficient, and facile sensing system made of N-doped graphene quantum dots (N-

GQDs)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT-PSS) was fabricated 

by drop coating on interdigitated Au electrodes with high uniformity over a large area of silicon 

substrate and was used to sense vapors of volatile organic compounds (VOCs) detection at room 

temperature. An innovative method was developed for the synthesis of N-GQDs by 

hydrothermal process of citric acid. The N-GQDs obtained have a N to C atomic ratio of 0.058 

and diameter of 2–7 nm. The nanocomposite sensing system exhibits high sensitive, selective, 

rapid, and reversible responses for detection of 1-1000 ppm VOCs. The N-GQDs/PEDOT-PSS 

nanocomposite gas sensor enhance methanol sensing properties by 13 times compared to pristine 

PEDOT-PSS in a low concentration of 50 ppm methanol. Moreover, the gas sensor based on the 

nanocomposites have fast response (ca. 12 s) and recovery (ca. 32 s) behavior, excellent room 

temperature selectivity and stability. The methanol-sensing mechanisms of the N-

GQDs/PEDOT-PSS nanocomposite gas sensor based on direct charge transfers and swelling 

process are highlighted. 

 

Keywords: N-doped graphene quantum dots, volatile organic compounds, PEDOT-PSS, 

sensivity 
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Introduction 

Volatile organic compounds (VOCs) have been released by agricultural, industrial, and human 

activities [1-3]. The concentration of VOCs should be strictly controlled, namely neither too low 

nor too high. Nevertheless, free VOCs with too high of a level may also be harmful, because 

these could react with oxygen based free radicals to produce new toxic products have been 

proclaimed to be potentially dangerous to human beings and animals; for example, they may 

result in cancer, allergies, cardiovascular system, respiratory tract, asthma, and emphysema [4-

6]. Therefore, it is essential to monitor the concentration of VOCs in environment. Continuing 

interest is focused on the development of VOCs sensors with higher sensitivity, broad VOCs 

detection range, as well as rapid response and recovery times for the determination and control of 

VOCs in environment. To achieve these goals, considerable attention has been directed toward 

the development of VOCs sensitive materials, especially nanomaterials due to their high surface 

to volume ratio and combination of conjugated polymers with nanomaterials [7-11]. However 

these sensors suffer from their respective disadvantages, such as the requirement for many types 

of reagents that may produce strong toxicity, low detection sensitivity, poor selectivity, limited 

structural and chemical properties, long response time and complicated performance [12,10,13]. 

Therefore, developing a low cost and facial VOCs sensing material that possesses high and even 

sensitivity for the full range of VOCs remains a challenge. 

Graphene quantum dots (GQDs), as recently emerging carbon-based materials, are graphene 

sheets smaller than 100 nm are proposed to be promising substitutes of the heavy-metal-

containing semiconductor-based QDs [14]. The GQDs have attracted more and more attention 
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due to their special advantages, such as low toxicity, better surface grafting properties because of 

their π–π conjugated networks or surface groups, high fluorescent activity, robust chemical 

inertness, and excellent photostability [14-18]. However, to date, nearly all research is focused 

on their preparation and property study; while little attention has been paid to the applications of 

the GQDs except for their applications in bioimaging, photoreduction of metals, and 

optoelectronic devices. To the best our knowledge, there are no studies of the application of 

GQDs in VOCs sensing material. Here in, due to our interest in synthesis of graphene based 

materials for various applications [19-23], especially as sensor [24-26], an effectively facial one 

step route has been presented to synthesis of N-doped GQDs (N-GQDs) by a hydrothermal 

process of citric acid. Herein we fabricated a sensitive, selective, facile, and low cost VOCs gas 

sensor based on pristine N-GQDs, pure Poly (3,4 ethylenedioxythiophene)-

poly(styrenesulfonate) (PEDOT-PSS), and N-GQDs/PEDOT-PSS nanocomposite. It is evident 

from the present work that room-temperature VOCs sensor with enhanced performance, fast 

response and recovery behavior using N-GQDs/PEDOT-PSS nanocomposite, suggesting 

promising applications of GQDs in sensing applications. 

Experimental section 

Materials  

The poly (3,4 ethylenedioxythiophene)-poly(styrenesulfonate) aqueous solution (PEDOT-PSS, 

weight ratio = 1:6, Clevios™ P VP AI 4083, solid content 1.3–1.7 %) was purchased from 

Heraeus Precious Metals GmbH & Co., KG. Dimethyl sulfoxide (DMSO) was purchased from Merck 

Co. Citric acid (+99.5 %), Urea (98 %), and ethanol were purchased from Sigma Alderich Co. 

Doubly distilled (DI) water was used throughout the experiment.  
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Synthesis of N-doped GQDs (N-GQDs) 

N-GQDs were synthesized by hydrothermal process of citric acid and urea. Briefly, citric acid 

(0.21 g, 1 mmol) and urea (0.18 g, 3 mmol) were dissolved in water (5 mL) and stirred about 30 

min, until the solution was made clear. Subsequently, the suspension was transferred into a 100 

mL Teflon-lined autoclave and heated to 160 °C for 4 h. Then, 50 mL ethanol was added to 

suspension drop by drop, with continuous, vigorous stirring. After cooling to room temperature, 

the resulting black suspension was centrifuged at 6000 rpm for 10 min and N-GQDs were 

obtained. 

Preparation of N-GQDs/PEDOT-PSS nanocomposite 

For preparation of the N-GQDs/PEDOT-PSS nanocomposite, PEDOT-PSS was first dissolved in 

a DI water with a weight concentration of 89.82 %. To prepare N-GQDs solution, 10 mg of 

hydrothermally synthesized N-GQDs powder was dispersed in 5 mL of DI water. The N-GQDs 

solution was then thoroughly sonicated with ultrasonication bath (EUROSONIC® 4D, 50 kHz) 

for 30 min at room temperature. Next, N-GQDs solution and 6 wt% DMSO were added into the 

PEDOT-PSS solution and a homogeneous aqueous dispersion was obtained after 1 h sonication 

and stirred for 4 h.  

Fabrication of N-GQDs/PEDOT-PSS nanocomposite gas sensor 

For fabrication of N-GQDs/PEDOT-PSS nanocomposite gas sensor, interdigitated Au electrodes 

with 100 nm thickness were deposited on a SiO2/Si substrate (10×4 mm2) by physical vapor 

deposition method (Fig. 1a-c). The prepared N-GQDs/PEDOT-PSS nanocomposite solution was 
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then drop casted over an interdigitated electrode (Fig. 1d). The width and inter-spacing of the 

electrodes are 200 µm and 400 µm, respectively. Then the nanocomposite gas sensor was backed 

for 1 h in furnace (Exciton, EX1200-4L) at 80 °C in nitrogen atmosphere. The pristine N-GQDs 

and PEDOT-PSS gas sensors were also fabricated and tested for comparison. The fabricated N-

GQDs/PEDOT-PSS nanocomposite gas sensor is displayed in Fig. 1e-f.  

Characterization methods 

Transmission electron microscopy (TEM) was examined under LEO 912AB electron microscopy 

operated at an accelerating voltage of 120 kV. Field emission scanning electron microscopy 

(FESEM) was measured with S-4160 electron microscopy. X-ray diffraction (XRD) pattern was 

performed using a powder XRD system (Philips1825) with Cu Kα irradiation (λ = 1.54 Å), 

operating at 40 kV and with a cathode current 20 mA. X-ray photoemission spectroscopy (XPS) 

measurements were performed on a ThermoVG scientific (VG multilab 2000) with Al Kα 

radiation. The UV-vis absorption spectrum and the photoluminescence (PL) spectrum of N-

GQDs in water were recorded using a 5300pc spectrophotometer and a fluorimeter, SPEX 

flourolog-3, with slit width of 0.5 mm. Atomic force microscopic (AFM) image was performed 

in the tapping mode with a Dualscope/Rasterscope C26 DME (Mahar Fan Abzar Co, Iran). 

Raman spectrum was taken using a Nanofinder 30 (Tokyo Instruments Co., Osaka, Japan). The 

sensor resistances were measured in a closed steel chamber (lab-made) with a LCR meter 

(Pintek-LCR900) and vapor gas flows were injected into the closed steel chamber by a mass 

flow meter (Alicat scientific, Tucson, USA). The reference humidity and sensor temperature 

were monitored by PT100 and HIH4000, respectively. The response and selectivity of the gas 

sensors were then assessed by the standard flow-through method towards methanol, ethanol, 
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acetone, toluene, water, chlorobenzene, and propanol with gas concentrations ranging from 1 

ppm to 1000 ppm at room temperature. A constant flux of synthetic air of about 50 cm3 min-1 

was mixed with the target gas source at different flow rate ratios to desired concentrations using 

mass flow controllers. All experiments were performed at room temperature (25 ± 2 °C) and the 

relative humidity of 10 ± 2 %. The sensitivity defined by the following equation: 

Sensitivity=
∆�

��
×100             (1) 

and  

      ∆� = ���� −	��                                        (2) 

 

where �� and ���� are the resistances of the sensor in synthetic air and target gas, respectively. 

Results and discussion  

 

Figure 2a show the typical TEM image of as-prepared N-GQDs. It is found that N-GQDs are 

relatively uniform with the diameters of 2˗7 nm, which similar to those of N-GQDs prepared 

electrochemically [27]. The corresponding AFM image exhibited its height distribution of 1−2.5 

nm which recommend that most of the N-GQDs comprise of 1−5 graphene layers (Fig. 2b-c).  

The UV-vis absorption spectrum of N-GQDs shows the absorbtion band at 270 nm (Fig. 3a), 

which is blue shifted by 50 nm with respected to that of hydrothermally synthesized GQDs [28]. 

It has been reported that isolated sp2 clusters with a size of 3 nm within the carbon-oxygen sp3 

matrix could yield band gaps consistent with blue emission due to the localization of electron-

hole pairs, suggesting the size and surface effects bring about an significant contribution to the 

observed blue shift for N-GQDs [29,30,27]. Note that the previous observations proved the 
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strong electron-withdrawing ability of the N atoms within the conjugated C plane could 

contribute to PL blue shift [30,31,27]. The PL spectrum of N-GQDs shows a PL emission peak 

centered at 500 nm (Fig. 3b), when the excitation wavelength was fixed at 300 nm. Moreover, it 

is worth mentioning that the resultant N-GQDs are very stable in aqueous solution without 

aggregation or fluorescence degradation after storage for several month at room temperature. 

Figure 3c shows the Raman spectra of N-GQDs which exhibits two characteristic peaks centered 

at 1324 and 1587 cm-1, corresponding to the D and G bands of carbon materials, respectively. It 

was observed that the ID/IG ratio of N-GQDs is 0.61. The low ratio of D to G bands not only 

indicates their electronic conjugate statues but also presents the production of relatively high 

quality N-GQDs by hydrothermal process of citric acid [32,27].    

Figure 3d shows typical XRD pattern for the N-GQDs which showed a broader diffraction peak 

at 25°, with respect to graphene film [27]. The corresponding d-spacing of N-GQDs is 

approximately 0.34 nm, according to Bragg’s law: 2dsinθ = nλ, where n is an integer determined 

by the given order, and λ is the wavelength. It is worth pointing out that the as-prepared N-GQDs 

did not show any diffractions in the 2θ ≈ 10° region characteristic of graphene oxides, evidently 

suggesting that the N-GQDs are different from graphene oxide [27,33,23]. XPS measurement 

was carried out to determine the composition of the as-prepared N-GQDs. The XPS spectra of 

the N-GQDs show a predominant graphitic C 1s peak at about 284 eV and an O 1s peak at about 

532 eV (Fig. 4). The O to C atomic ratio for N-GQDs is almost 0.663, demonstrating that the N-

GQDs have a high oxidation level. The N to C atomic ratio was calculated to be 0.058, which is 

remarkably higher than that of the N-GQDs prepared electrochemically (0.043) [27,30]. A 

pronounced N 1s spectrum of the N-GQDs shows the presence of both pyridine-like (398.3 eV) 

and pyrrolic-like (399.6 eV) N atoms [27,34]. This confirmed the successful incorporation of N 
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atoms into the N-GQDs by hydrothermal process in the presence of urea. The SEM images of 

drop-coated pure PEDOT-PSS and N-GQDs/PEDOT-PSS composite films showed that the N-

GQDs were homogenously dispersed into the PEDOT-PSS matrix without obvious 

agglomeration (Fig. 5). This was ascribed to the O-rich groups on the N-GQDs surface which 

ensured the strong bonding with PEDOT-PSS [35,27].  

Figure 6a-b show the dynamic responses of the pristine PEDOT-PSS and N-GQDs/PEDOT-PSS 

nanocomposite gas sensors towards various concentration of methanol, ethanol, and acetone at 

room temperature, respectively. It indicates that the sensors exhibit good repeatability of 

response towards various concentration of VOCs. The sensivity of both sensors increase upon 

exposure to VOCs and recover to the initial value upon the removal of VOCs in air. In addition, 

the both sensors showed the higher sensivity to methanol as compared to other VOCs. 

Furthermore, the sensivity of N-GQDs/PEDOT-PSS nanocomposite gas sensor is increased by 

more than a factor of about twelve as compared to pristine PEDOT-PSS gas sensor at 50 ppm of 

methanol (time = 200 s). The resistance changing behaviors may be attributed to the adsorption 

and desorption of VOC molecules of the sensing films. The details of sensing mechanism for N-

GQDs/PEDOT-PSS nanocomposite gas sensor will be discussed in further. In addition, it can be 

observed that N-GQDs/PEDOT-PSS nanocomposite gas sensor has much lower initial resistance 

than pristine PEDOT-PSS. The conductivities of pristine PEDOT-PSS and N-GQDs/PEDOT-

PSS nanocomposite sensing films measured by 4-point probe technique at 10 nA applied current 

are 650 and 1365 S.cm-1, respectively. It corresponds to a significant increase of charge carrier 

concentration due to N-GQDs incorporation. From the results, the conductivity of PEDOT-PSS 

is increased by more than a factor of 2 after the N-GQDs addition. Thus, N-GQDs may form 
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conduction channels that substantially enhance the charge transport process through the PEDOT-

PSS matrix. 

The PEDOT-PSS based gas sensors usually operate at rather low temperatures with respect to 

gas sensors based on metal oxide [26,11,36]. It can be seen that the N-GQDs/PEDOT-PSS 

nanocomposite gas sensor shows low sensitivity to methanol with increase of temperature (Fig. 

7). Therefore, the optimal temperature of the N-GQDs/PEDOT-PSS nanocomposite gas sensor 

for VOCs detection was found to be room temperature. Since the interaction between N-

GQDs/PEDOT-PSS nanocomposite film and VOCs gas is exothermic, the activation energy of 

desorption is larger than that of the adsorption methanol molecules of nanocomposite sensing 

film. This revealed that the decrease in sensivity at higher temperatures is resulted from the 

higher desorption rate of methanol gas. 

The response time, defined as the time to reach 90 % of the maximum total resistance change of 

the pristine PEDOT-PSS and N-GQDs/PEDOT-PSS nanocomposite gas sensors towards 

methanol are estimated to be 164 s and 12 s, respectively (Fig. 8). Moreover, the resistance of N-

GQDs/PEDOT-PSS nanocomposite gas sensor could recover almost completely to the initial 

value within the pure air exposure times of 40 s while the PEDOT-PSS gas sensor shows 

undesirable resistance drift. Thus, N-GQDs/PEDOT-PSS nanocomposite gas sensor exhibits 

relatively short response and recovery times compared with pristine PEDOT-PSS one. The 

slower response and recovery of pristine PEDOT-PSS gas sensor may be due to low diffusion 

and short penetration depth of gas molecules on very smooth surface of the PEDOT-PSS sensing 

film [26,11]. 

In order to investigate the selectivity of pristine PEDOT-PSS and N-GQDs/PEDOT-PSS 

nanocomposite gas sensors, they were exposed to a variety of VOCs including methanol, 
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ethanol, acetone, toluene, chlorobenzene, propideanol, and water with the concentration of 100 

ppm at room temperature. Fig. 9 demonstrates the gas response of pristine PEDOT-PSS and N-

GQDs/PEDOT-PSS nanocomposite gas sensors to various VOCs. It can be seen that the N-

GQDs/PEDOT-PSS nanocomposite gas sensor shows high response to methanol while is almost 

sensitive to the other VOCs. At 100 ppm of methanol, the sensivity of N-GQDs/PEDOT-PSS 

nanocomposite gas sensor increases further to 154.4 % which is almost 12 times as high as that 

of pristine PEDOT-PSS gas sensor. Therefore, the sensivity of pure N-GQDs, pristine PEDOT-

PSS and N-GQDs/PEDOT-PSS nanocomposite gas sensors to methanol was depicted at 

concentration ranging from 1 ppm to 1000 ppm at room temperature in Fig. 10a. At 1000 ppm 

concentration, the sensivity of pure N-GQDs, pristine PEDOT-PSS and N-GQDs/PEDOT-PSS 

nanocomposite gas sensors are 10 %, 35 %, and 180 %, respectively. With N-GQDs addition, the 

sensivity and selectivity to methanol are substantially improved. It is seen that the room 

temperature response of pure N-GQDs to methanol is much lower than that of pristine PEDOT-

PSS, but the gas response is significantly enhanced after preparation of N-GQDs/PEDOT-PSS 

nanocomposite film. Thus, N-GQDs enhances methanol interaction leading the higher charge 

reduction only when it is included in PEDOT-PSS network. At low concentration (1–50 ppm), 

pristine PEDOT-PSS is still able to respond to methanol with gas response ranging from 0.5–10 

%. However, the gas response of N-GQDs/PEDOT-PSS nanocomposite gas sensor to methanol 

is still higher than that of undoped one with the gas response ranging from 13.5 % to 134 % (Fig. 

7b).Moreover, the gas response of pristine N-GQDs, and PEDOT-PSS gas sensors to methanol 

are not significant different in the low concentration range (1–50 ppm). The detection limit of 

methanol for N-GQDs/PEDOT-PSS nanocomposite gas sensor is 5 ppm at the room temperature. 
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It is worth mentioning that the dynamic range of methanol for fabricated nanocomposite gas 

sensor is then estimated to be 10-200 ppm.  

Sensing mechanism of N-GQDs/PEDOT-PSS nanocomposite gas sensor 

Organic analytes and VOCs are not reactive at room temperature, so it is hard to detect VOCs 

with their chemical reactions with conducting polymers. Therefore, typical sensing mechanisms 

including absorbing and swelling of polymers have been proposed for the detection of VOCs by 

conducting polymer systems [36,37]. In this case, the resistance changing behavior of N-

GQDs/PEDOT-PSS nanocomposite gas sensor may be explained based on two possible 

mechanisms: i) When methanol molecules are adsorbed on the surface of N-GQDs/PEDOT-PSS 

nanocomposite by physisorption, hence the holes of conductive N-GQDs/PEDOT-PSS 

nanocomposite surface will interact with the electron-donating methanol analyte. This leads to 

not only increase of delocalization degree of conjugated π-electrons of sensing film but also 

decrease in charge carriers resulting in the decline of the electrical conductivity of the sensing 

film [38,35,11]. This mechanism is widely adopted for explanation of the change in conductivity 

of conductive polymer to acidic/basic analytes (doping/dedoping process). ii) In addition to 

adsorption, swelling process from the diffusion of analyte into the conducting polymer systems is 

widely observed phenomenon in the VOCs detection. When methanol molecules diffuse into 

polymer matrix, electron hopping process becomes more difficult because the PEDOT interchain 

distance increases due to the swelling process [39,37,36]. In the case of N-GQDs/PEDOT-PSS 

nanocomposite gas sensor, N-GQDs embedded into polymer matrix acts as conductive pathways 

that favor the hopping of electrons. The swelling process can cause the N-GQDs to stay apart, 

disrupting conductive pathways in the sensing film. The increase of PEDOT distance and 

decrease of N-GQD’s conductive pathways occur simultaneously, leading to significant increase 
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in resistance of the N-GQDs/PEDOT-PSS nanocomposite gas sensor upon methanol exposure 

and therefore enhanced methanol response. Based on the results, direct charge transfer process 

appears to be the most probable dominant process for methanol-sensing of the N-GQDs/PEDOT-

PSS nanocomposite gas sensor due to the observed high response and selectively to polar 

molecules.  

Conclusion 

The pure N-GQDs, pristine PEDOT-PSS and N-GQDs/PEDOT-PSS nanocomposite gas sensors 

has been successfully fabricated and characterized for VOC vapors sensing. The N-GQDs was 

synthesized by simple hydrothermal process of citric acid with a diameter of 2-7 nm and N to C 

atomic ratio of 0.058. This N-GQDs/PEDOT-PSS nanocomposite gas sensor exhibit high 

sensing performance to methanol with concentration ranging from 1 ppm to 1000 ppm at room 

temperature. The N-GQDs/PEDOT-PSS nanocomposite gas sensor enhance methanol sensing 

properties by 12 times compared to pristine PEDOT-PSS at room temperature. Direct charge 

transfers and swelling process are among possible sensing mechanisms of the N-GQDs/PEDOT-

PSS nanocomposite gas sensor. From the results, the proposed nanocomposite gas sensor offers 

several distinct advantages over some other sensors including high sensing performances, fast 

response and recovery times, low temperature processing, high productivity and simplicity. 

Moreover, it will be useful for development of future wearable electronic technology. 
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Fig. 1 Schematic steps of gas sensor fabrication process. 
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Fig. 2 (a) TEM image of as-prepared N-GQDs, (b) AFM image of N-GQDs on Si substrate, and 

(c) Height distribution of N-GQDs. 
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Fig. 3 (a) UV−vis absorption spectrum, (b) PL spectrum, (c) Raman spectrum and (d) XRD 

pattern of as-prepared N-GQDs. 
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Fig. 4 Survey XPS spectrum of as-prepared N-GQDs. 

 

Fig. 5 SEM images of the pristine PEDOT-PSS (a), and N-GQDs/PEDOT-PSS nanocomposite 

films (b) in two different magnifications. The films were formed with drop coating. 
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Fig. 6 Dynamic responses of (a) pristine PEDOT-PSS, and (b) N-GQDs/PEDOT-PSS 

nanocomposite gas sensors to various concentration of methanol, ethanol, and acetone at room 

temperature. 
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Fig. 7 Sensivity of the N-GQDs/PEDOT-PSS nanocomposite gas sensor as function of 

temperature towards 50 ppm methanol.  
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Fig. 8 Response and recovery times of the VOC gas sensors based on (a) pristine PEDOT-PSS 

and (b) N-GQDs/PEDOT-PSS nanocomposite for 100 ppm of methanol, ethanol, and acetone at 

room temperature 
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Fig. 9 Selectivity of the pristine PEDOT-PSS and N-GQDs/PEDOT-PSS nanocomposite gas 

sensors to various VOCs vapors of 100 ppm. 
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Fig. 10 Sensivity of pure N-GQDs, pristine PEDOT-PSS and N-GQDs/PEDOT-PSS 

nanocomposite gas sensors towards methanol, ethanol, and acetone at room temperature in the 

concentration range of (b) 1-1000 ppm, and (b) 1-50 ppm. 
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The highly efficient VOCs sensor based on N-doped graphene quantum dots (N-

GQDs)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT-PSS) was fabricated 

at room temperature. 
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