

راهنمای کاربردی نرمافزار SpectraRay II

نویسنده: سون پیترز^۱(دسامبر ۲۰۰۹)

alpha 0.23 نسخه

[\] Sven Peters

[/]site: http://maharfanabzar.com تلفن: ۸۸۵۰۰۳۲۵ فاکس: ۹۲۶

SpectraRay II - عملیات اصلی نرمافزار SpectraRay II - ۱ - شروع نرمافزار

با دوبار کلیک روی نشان گرSpectraRay II روی صفحه ی اصلی کامپیوتر، نرمافزارSpectraRay II راباز کنید. به صورت همزمان، نرمافزار راهاندازی دستگاه نیز به صورت خودکار شروع می شود. این نرمافزار برای راهاندازی سخت افزار بیضی سنج لازم استو نباید آن را ببندید. این نرمافزار به صورت خودکار باز می شود ولی پیغامهای خطا ظاهر می شود. فقط روی نشان گر«OK»کلیک کنید.

۲-۱- شمای کلی پنجرهیSpectraRay II

پنجره یاصلیSpectraRay II شاملنوار منو، نوارنشان گرهاو چهار زیر پنجره است.

نوارنشان گرها

جهت سرعت عمل بیشتر، نشان گرمهمترین عمل گرهایSpectraRay II مانندپنجرهیاندازه گیری. Meas می اندازه گیری SpectraRay ا پنجرهیتطبیق حکی یا تنظیم پارامترهای محیطی 🖫 درنوارنشان گرهاآورده شدهاند.

زيرپنجرەھا

مواد

این پنجره حاوی مجموعهیمفصلیاز توزیع مواداست. میتوان با کلیک کردن موشواره روی آنها، نگه داشتن کلید و حرکت به زیرپنجرهیمدل کردن، آنها را برای مدلسازی نوری، به این زیرپنجره منتقل کرد. می-توانتوزیعهای مواد جدید را نیز به این پنجره اضافه کرد. نشان گر جلوی نام ماده، نشاندهندهینوعرابطهیتوزیع است.

مدل

این پنجره برای ساخت مدل نوریبیان گررفتار نوری نمونه ی چندلایه استفادهمی شود. در این جاپارامترهای مورداستفاده برای فرآیند تطابقتعریف می شوند. هر زمانی طی فرآیند مدل سازیمی توانلایه های جدید را به مدل نوری وارد یا لایه های موجود را از مدل نوری حذف کرد. عملا، محدودیتی برای بیشینه تعداد لایه ها در مدل نوری وجود ندارد.

دادەھا

در اینجا،تمام طیفهای اندازه گیری شده ذخیره می شوند. هم چنین، دادههای استخراج شدهدر این جا ذخیره می شوند. مجموعه یداده ها رامی توانبه فرمت های مختلف مانند ASCII ذخیره کرد. خانه ی جلوی نام هر مجموعه داده، فعالبودن (قرمز) یانبودن (خاکستری) مجموعه داده را تعیین می کند (یعنی برای فرآیند تطابق استفاده می شود).

اندازهگیریها

این پنجره امکان ورود سریع اندازه گیریهایانجامشده دردستگاههای دیگر را فراهم می آورد.

۳-۱ پنج مرحله یاصلی عملیات

عملیات اندازه گیری و آنالیز نمونه را میتوان در پنج مرحله یاصلیزیر خلاصه کرد:

- تنظيم نمونه
- ۲. اندازهگیری بیضیسنجی

۲-۱.شروع اندازهگیری

۲-۲.نام گذاری اندازه گیری

۳. مدل کردن

۳–۱.ایجاد یک مدل

۳-۲.انتخاب پارامترهای تطابق

- ۴. تطابق
- ۵. گزارش

۵–۱.بدون گزارش

۵–۲.گزارش اندازهگیری

۵–۱۳ایجاددستی گزارش

۵-۴.استفاده از «شبیهسازی»برای گزارش

۵-۵.صدور دادههای شبیهسازی به فایلASCII

این پنج مرحلهی اندازه گیری و آنالیز نمونهها، در فصلهای بعدی مورد بررسی قرار می گیرند.

نمونه یاستاندارد زیر به عنوان یک مثال استفاده می شود:

۱–۳–۱– تنظيم نمونه

برای تنظیمنمونه، از تلسکوپ موازی کننده یخود کار (ACT)به همراه عدسی شیای استفاده می شود. تنظیم دقیق ارتفاع و چرخش نمونه، برای به دست آوردن مقادیر صحیح زاویه یبر خورد و طیفPsiوDeltaضروری است.

تنظیم نمونههای ایدهآل (کاملا تخت وآینهای^۱)

مرحلهی(الف) تنظیم ارتفاع

عدسی شیای را به موقعیت''sample height''(ارتفاع نمونه) حرکت دهید.

با استفاده از پیچهای تنظیم ارتفاع،علامتبهعلاوهی(+)سفید را فوکوس کنید.

ارتفاع صحيح (علامت +فوكوس است)

ارتفاع غلط (علامت +فوكوس نيست)

مرحلهی(ب) تنظیم چرخش

عدسی شیای را به موقعیت"lighttilt) (چرخش روشن) یا"darktilt) (چرخش تاریک) حرکت دهید.

با استفاده از دو پیچ مربوطه، چرخش را با حرکت دادنعلامت+به فصل مشترک چهار خطکش درجهبندی، تنظیم کنید.

' specular

مرحلهی(پ) تنظیم ارتفاع (تکرار)

میکروسکوپ را به موقعیت "sampleheight"(تنظیم ارتفاع) بر گردانید. تنظیم ارتفاع را کنترل کنید. اگرارتفاعتنظیم نبود، مرحلهی(الف) را تکرار کنید.

تنظيم نمونههاى غيرايدهآل

تنظیم نمونههای غیرایدهآل،آینهای، غیرتخت

در صورتی که نمونهی موردبررسی،آینهایاست ولی کاملا تخت نیست،علامت+در حالت چرخش، واضح نیست.در این حالت،''dark-tilt''ترجیح داده می شود زیرا نسبت به''lighttilt''تصویر واضحتری می دهد.

مرحلهی(الف)عدسی شیای را به موقعیت"sampleheight"حرکت دهید.

مانند نمونههای ایده آل، از پیچ تنظیم ارتفاع برای فوکوس کردنعلامت +استفاده کنید.

مرحله(ب)عدسی شیای را به موقعیت''darktilt''حرکت دهید.

با استفاده از پیچهای چرخش،علامت+محو را به فصلمشترکانتقال دهید.

- تنظیم نمونههای غیرایدهآل، غیرآینهای

در حالتی که نمونه غیرآینه ایاست یا خیلی زبر است، نمی توان تنظیم چرخش را انجام داد، زیراعلامت +دیگر قابل مشاهده نیست. در این حالت می توان ابتدا برای مثال از یک ویفر Siآینه ایبرای تنظیم چرخش پایه استفاده کرد که بعدا تغییر نخواهد کرد. سپس، نمونه زبر را روی پایه قرار داد و ارتفاع را تنظیم کرد. در اغلب موارد،علامت +دیده می شود و فوکوس است و سطح نمونه نیز دیده می شود.

مرحله الف)ویفر Siرا روی پایه قرار دهید. عدسی شیئی را به موقعیت "light tilt"یا "dark tilt"حرکت دهید با استفاده از دو پیچ چرخش و حرکت دادن بهعلاوه به فصل مشترک، چرخش را تنظیم کنید مرحله ب)نمونه زبر را روی پایه قرار دهید و عدسی شیئی را در موقعیت "sample height" قرار دهید مانند نمونههای ایدهآل، با استفاده از پیچ تنظیم ارتفاع،علامت +را فوکوس کنید

ارتفاع غلط (علامت+، فوكوس نيست)

ارتفاع صحيح (علامت+، فوكوس است)

۱–۳–۲ اندازه گیری بیضی سنجی

انجام اندازهگیری

نشانگر "Measure"(هشار دهید تا"measurementwindow) (پنجرهیاندازهگیری) باز شود.

تنظیمهای استاندارد راطبقآنچهدر پنجرهیزیرنشانداده شدهانتخاب کنید.

دکمهی''Measure''را فشار دهید.

به این ترتیب، اندازه گیری انجام می شود. می توانید صدای حرکت آنالیزور^۱، پلاریزور^۲، شاتر^۳و جبران کننده^۱را بشنوید.

وقتی که اندازه گیری تمام شد، با استفاده از "Quit"، از پنجره خارج شوید.

^{&#}x27; analyzer

^r polarizer

[&]quot; shutter

^{*} compensator

anale settings	erne spectra	acquisitio
• single <u>a</u> ngle a	t 70.00	Goto this angle
O multiple angle	50.00 70.0	00 step 10.00
Spectral range to	be measured	
lower wavelength	limit (nm): 300.0	Use defaul <u>t</u> range
upper wavelength	limit (nm): 850.0	Use max. range
Use default UV/	VIS range Use de	fault NIR/MIR range
neasurement mode	e	
	i,Delta-spectrum	<u>·</u>
Result type: Ps		
<u>R</u> esult type: Ps Data aquisition:	Quick Step Scan	-
Result type: Ps Data aquisition: reduced Spot	Quick Step Scan	efore measurement

نتایج اندازه گیری در بخش"Data"نرمافزار SPECTRARAYذخیره می شود.

PsiDelta	300	nm	850 nm	Angle: 70.00	Th 10/21/2008 at 11:25:	30
----------	-----	----	--------	--------------	-------------------------	----

ناماندازه گیری شامل اطلاعاتی در مورد نوع طیف، محدوده یطیف، زاویه یبر خورد، تاریخ و زمان است.

تغییر نام نتایج اندازه گیری

نام فایل نتایج نمونه را به نامی که توصیف کننده ینمونه باشد، تغییر دهید. برای این کار، روی مجموعه دادههای اندازه گیری دو بار کلیک کنید و به بخش"Title"بروید.

نام جدید را در بخش":Name''وارد کنید.

نام استاندارد:

Graph	Table	Title	H <u>e</u> ader	Straylig	ght	
Name:	m 850	nm Angle: i	/0.00° Tu	0/21/20	08 at 11:	25:30
User:		Date:		Ti	me:	
UV/VIS	SE 800 (Settings:	280.000 nm	850.000	nm)		-
UV/VIS	SE 800 (Settings:	280.000 nm	850.000	nm)		
Measur	SE 800 (Settings: rement Er	280.000 nm	850.000	nm)	0.00 min	
UV/VIS Measur Wav	SE 800 (Settings: rement Er relength: of incid.:	280.000 nm ivironment 0.0 nm 0.00 *	850.000	nm) ss time: erature:	0.00 min 273.2 K	
Measur Wav Angle Polarij	SE 800 (Settings: rement Er relength: of incid.: zer pos.:	280.000 nm vironment 0.0 nm 0.00 * 45.00	850.000	nm) ss time: erature: nt (01):	0.00 min 273.2 K 1.0000	

l Data v	iew				
<u>G</u> raph	Table	Title	Header	Straylight	
Name:	400 nm Si	02 / Si - SI	ENTECH ret	erence sample	
User:		Date:		Time:	_

درکنار "Title"، دکمههای دیگری است.

دکمهی مهم در اینجا،"Graph" است.این دکمه، منحنی۵، ۲٫ رابر حسبطول موج (nm)نشان میدهد.

نام جدید اندازه گیری در بخش"Data''زنرمافزار SPECTRARAYنشان داده می شود.

/site: http://maharfanabzar.com تلفن: ٨٨٥٠٠٣٢٦ فاكس: ٨٨٥٠٠٣٢۶

Data

400 nm SiO2 / Si - SENTECH reference sample

۱–۳–۳– مدلسازی

مدل نوری، خواص نوری ومتریکنمونه را توصیف میکند که شاملزیرآیند، محیط (غالبا هوا) و لایههای بین این دو است.توزیع ثوابت نوریnوkمربوط به محیط، لایهها وزیرآیند، توسط فرمولهای توزیع، شرح داده میشوند. برای انواع مواد مختلف، انواع فرمولهای توزیع، وجود دارد.

ساخت یک مدل

اکنون،مدل نوری با انتخاب مواد از کتابخانهیمواد، ساخته می شود. در مثال زیر، از لایهای با k،n ثابت برای توصیف هوا، از توزیعکوشی^۱برای توصیف لایهیSiO2و از فایل لایهای برای توصیفزیر آیندسیلیسیمی استفاده شده است.

اینموادبه کمک موشواره از پنجرهی"Materials"؛به پنجرهی"Model،منتقل میشوند.

اگر ترتیب لایهها درست نباشد، میتوان به کمک موشواره، به راحتی آنها را جابهجا کرد.

مدلی برای نمونهیاستاندارد ایجاد میشود:

اينمدلبه صورت زيردر بخش مدل نرمافزار SPECTRARAYظاهر می شود:

[\] Cauchy

[/]site: http://maharfanabzar.com تلفن: ۸۸۵۰۰۳۲۵ فاکس: ۸۸۵۰۰۳۲۶

حالا باید پارامترهای تطابق انتخاب شوند.

اگر هیچ پارامتری انتخاب نشود، پنجرهیتطابقبازنمی شود و پیغام خطای زیر ظاهر می شود:

Informat	tion 🗙
(You must select at least one parameter to fit.
	[iok[]

انتخاب پارامترهای تطابق

روی لایهی"(Layerdispersion"(لایه ایکه باید پارامترهای تطابقآنانتخاب شوند) دوبار کلیک کنید. پنجرهی"Layerdispersion"باز میشود: برای"(cau-SiO2(therm)، ضرایبکوشی"N0"و"N1"برای تطابق انتخاب میشوند. با یک بار کلیکروی نام هر پارامتر،آن پارامترپررنگمیشود (<mark>زرد?</mark>) که نشاندهندهی انتخابآنبرای تطابق است. ضخامت لایه نیز برای تطابق انتخاب میشود.

اگر اندازه یتقریبی ضخامت لایه شناخته شده باشد، باید در قسمت''Thickness' وارد شود (در این جا:۴۲۰nm)

Cauchy layer - Cau-SiO2 (therm.)		×
1.49 1.49 1.49 1.49 1.48 1.47 1.46 300.0 400.0 500.0 600.0 700.0 800.0 Wavelength [nm]	<u>Name:</u> Cau-SiO2 (tl <mark>?Ihickness</mark> 420 nm Display IX n Г Γ e1 Γ	k e2
Refr. ind.: 2N0: 1.452 2N1: 36.0 N2: 0.0 Absorption: K0: 0.000 K1: 0.000 K2: 0.000	Range: from to Eit >>	200.0 nm 1000.0 nm Help
	<u>C</u> ancel	Qk

حالبا استفاده از "OK" پنجره راببنديد.

ظاهر پنجره عوض میشود:

ضخامت لایه۴۲۰nm است.علامت<mark>ا</mark>در انتهای خط، نشان میدهد که پارامترهای تطابق برای این لایه انتخاب شدهاند.

	<u>M</u> odel			
		Air	NK Layer	n=1.0000
	420.00 nm	Cau-SiO2 (therm.)	Cauchy Layer	n=1.4610
1	N.	Silicon VIS+NIR	File Layer	n=3.8717 k=0.0158

۱–۳–۴– تطابق

با فشار دادن دکمهیتطابق(🗪)، پنجرهیتطابق(Fit of parameters)باز میشود.

دو منحنیPsiوDeltaوPsiبر حسبطولموجدر پنجرهی"Fit ofparameter"نشان دادهمی شوند. هر صفحه ینمایش حاوی دو منحنی است. یکی نشان دهنده یطیفاندازه گیری شدهو دیگری نشان دهنده یطیف مدل سازی شده است. در اینجا، طیفهای PsiوDelta اندازه گیری شده به رنگهای آبی و قرمزروشنه ستند، در حالی که طیفهای Delta، Psi مدل سازی شده، هردو به رنگ قرمز تیره هستند.

مقدار "Modulo"؛برای افزایش سرعت تطابق استفاده میشود.

Modulo=۱: يعنى تمام نقاط براى تطابق استفاده مىشوند؛ آهسته ولى دقيقترين است.

Modulo=۴: یعنی از هر چهار نقطه،یکی برای تطابق استفاده می شود؛ سریع تر است ولی تمام نقاط استفاده نمی شوند.

به صورت عمومی از Modulo=۴ استفاده کنید.

راهنمایی: هرچه ساختارهای بیشتر یا تیزتردرطیفهایPsiوDeltوجود داشته باشد، باید مقدارmoduloکمتر باشد تا دادهها از دست نروند.

با فشار نشانگر ''Run Fit'، فرایند تطابق شروع میشود.

اکنون،نرمافزار مقادیر پارامترهای انتخاب شدهی ضخامت،N0وN1برای تطابق راتغییر میدهدتا انحراف بینطیفاندازه گیری شدهو مدل نوری را به حداقل برساند. هدفاز این کار،رسیدن به تطابق کامل طیف اندازه گیری و مدل شده است.

انحراف بین طیف اندازه گیری و مدل شده، به صورت مقدار میانگین مربعاتخطا(MSE^۱)بیان می شود.

طی فرایند تطابق،تعداد محاسبه، مقدار MSEو پارامترهای تطابق در گوشهیپایین سمت چپ پنجره، نمایش داده می شوند.

No. 13: 8.278833295321 (37.1) Thickness [nm]=427.73 N0=1.403 N1=16.8

وقتى كهفرايند تطابق متوقف مىشود، پنجرەينتايج ظاهر مىشود:

Fit Results										
[Name	Fit	Value	Typ. Diff.	Accuracy	Dig.	View	Tool	Minimum	Maximu *
	[1,1] Cau-SiO2 (therm.): Thickness [nm]	2	398.31	20.00	0.100	2	¥.		0.00	40000.
I	Cau-SiO2 (therm.): ND	×.	1.458	0.100	0.0010	3	¥.	1	-100.001	100.0
	Cau-SiO2 (therm.): N1	1	32.6	100.0	0.01	1	¥.		-40000.0	40000
l										•
	Print	П	Cancel	He		nк				
	Enn	_	Mances		<u> </u>	26	_			

با کلیک کردن روی"OK،می توان این پنجره را بست و به صفحه یتطابق رفت.

با فشار دادن نشان گر "Recalculate"می توانید مجددا مقدار MSEرا ببینید:

' mean square error

هر اندازه گیری و مدل به صورت یک طیف ظاهر میشود

حالا بايد تصميم گرفت:

كيفيت تطابق خوب است←آماده است+به قسمت 'Reporting''پيش برويد.

کیفیت تطابق پایین تر از حد انتظار است←آماده نیست←باید مدل نوری بهبود یابد.

در اینجا تطابق کامل است. یعنی معادلههای ریاضی مدل نوری دقیقا اندازه گیری را توصیف می کند. حالا می توانید به مرحلهی "Reporting؛بروید.

پنجرهیتطابق را با"Quit"ترک کنید و به پنجرهیاصلیSpectraRay IIبروید.

۱–۳–۵– گزارش

بدون گزارش

بدونارایه یهر گونه گزارشی، دادههای اصلی مدل نوری تطابق داده شده را می توان از پنجره یمدل خواند.

مدل نوری با نتایج حاصل از فرایند تطابق، بهروزرسانی شده است.

	<u>M</u> odel			
		Air	NK Layer	n=1.0000
	398.31 nm	Cau-SiO2 (therm.)	Cauchy Layer	n=1.4661 🛛 🔒
ł	l.	Silicon VIS+NIR	File Layer	n=3.8717 k=0.0158

ضخامت صحیح لایه و ضریب شکستnدر طولموج مورداستفاده، نمایش داده می شود.

به خاطر توزیع ضریب شکستn، مقدار آن در هر طولموجی متفاوت است.

چگونه طولموج مشاهدهشده تغییر میکند؟

طول موج مورداستفاده در "Environmentalparameters" تعريف می شود.

نشان گر(🕎)را انتخاب کنید.

دكمهى"Values،را انتخاب كنيد.

در قسمت"Wavelength"، مقدار ۶۳۲/۸nm را وارد کنید.

از این پنجره خارج شوید.

🔲 Environment pa	rameters			×
<u>V</u> alues <u>R</u> anges	s <u>U</u> nits	<u>S</u> ubstrate	lnhomog.	<u>E</u> rrors
<u>W</u> avelength	<mark>632.8 nm</mark>		<u>0</u> k	
Angle	70.00 °		<u>C</u> ancel	
<u>T</u> emperature:	296.6 K			
Process time:	0.00 min			
🗵 <u>d</u> isplay enviro	nment param	eters		
🗆 display RAE pa	arameters			
□ reverse stack	<u>U</u> se data	a modulo:	4	

گزارش اندازه گیری

می توان در Internetexplorerگزارش خودکار را به صورت مدر کhtmlیجاد کرد و نمایش داد. نشان گر چاپ گر(() را فشار دهید تا پنجرهی"Reportmeasurement"باز شود. در پنجرهی"Title"،"Reporting"و ارد کنید.

برای نشان دادن عناوین در منحنی به ''legend''بروید.

"plottheory"را روشن كنيد تا طيف مدل شده را نشان دهد.

"GenerateWebReport"را فشار دهید.

(Ú)	items to report I layer stack I fit results	Plot options Title: SiO2 / Si		
12	Cenvironment Call parameters	Subtitle: 400 nm		
6	S jist of data T two pane curves	Linewidth: 1.0 pts. 🕫 legend		
2	Comment	plot theory ctWavelength: 632.0		
.	Copy selected items as text to clipboard	Run glot with current data		
0	Copy pane 1 as picture to clipboard	Run plot with pane 1 data		
0	Copy pane 2 as picture to clipboard	Bun plot with pane 2 data		
ŏ	Generate	e Web report		

اکنونگزارش شبکه به صورت خودکار ایجاد شده و قابل چاپ کردن است.

تولید دستی گزارش

ک د.	بەclipboardصاد	ها و نتابح ۱	"مہ توان نمودار	Measurement report	window";	بااستفاده
ىرى.	ipotarus,	الفاوصايين را	می توان تموتار	Wiedsurennent report	ر window	باستعاده

	IL U P	•••	· ··· · ·	
(1) Items to report		Plot options		
X layer stack	F fit results	Title: S	102 / SI	
⊂ _gnvironment	□ all parameters	Subtitle:	100 nm	
🕅 Jist of data	T two pane curves	Linewidth:	.0 pts. 1X legend	
		6	alat theory cottours	632.8
Cor	nme <u>n</u> t	- portorial ortravelenguit (
Copy selected ite	ms as text to clipboard	Run glot with current data		
Copy pane 1 as	picture to clipboard	Run plot with pane 1 data		
Copy pane 2 as	picture to clipboard	E	jun plot with pane 2 da	ta
	Generate	e Web rep	oort	
Status:	Press a Button	1		

/site: http://maharfanabzar.com تلفن: ۸۸۵۰۰۳۲۵ فاکس: ۸۸۵۰۰۳۲۶

با فشار دادن"Copypane 1 as picture toclipboard"، طيفsiدر clipboardکپی میشود.

با فشار دادندکمهیCtrl+V، میتوان نمودار را درنرمافزارWordیا برنامههای دیگر وارد کرد.

با فشار دادن"Copy pane 2 as picture toclipboard"، طيفDeltaدر clipboardکپی می شود.

استفاده از "Simulation"برای گزارش

"Simulation" برای محاسبهیداده براساس مدل نوری واقعی استفاده میشود.

در این مثال توزیع الایه "Cau-SiO₂(therm.)، برحسبطول موج، محاسبه می شود.

"Simulation"؛با فشار دادن نشان گر🖽 آغاز میشود.

"Curve parameter"،محور xاست→" [0] wavelength [nm]" (ا انتخاب كنيد.

[/]site: http://maharfanabzar.com تلفن: ۸۸۵۰۰۳۲۶ فاکس: ۸۸۵۰۰۳۲۶

محدوده يطول موج را به صورت زير تنظيم كنيد:

از: ۳۰۰

تا: ۵۰۸

گام: ۱

"Calc unit"ئمحور yاست→"n layer"را انتخاب كنيد.

Cauchy-SiO₂(therm.)را به عنوان"Layer"دانتخاب کنید.

به"keep؛بروید. این کار، یک دستهدادهی جدید در پنجرمی"Data"یجاد می کند.

"Calc" را فشار دهید. اکنون،داده محاسبه شده و در پنجرهی "Data" ذخیره می شود.

Simulation			\$
Environme	ent: Phi=70.00 ° Wavelength=632.8 nm	n Modulo=4	
Cur⊻e p	arameter —		-
[0] Wave	elength [nm]		
	from 300 to 850		
	curve step: 1		
Calc <u>u</u> nit:	n layer 👱	1.4942	Type: Curve
Layer:	Cau-SiO2 (therm.)	🕱 keep	IX colors first
file: C:\C	GRAMS\Data\Test.dat	vover <u>w</u> rite	「display 「 *.dob Cancel
		Edit	Cale Dieplay Quit

با استفاده از "Quit"، پنجرهی "Simulation" را ترک کنید و به SPECTRARAY بر گردید.

دستهدادهی جدید توزیعnمربوط به"(.Cau-SiO2(therm'

نمودار: عنوان:

Header:

🔳 Data view 🔰	🔳 Data view 🔀	Data view.	×
Graph Iable Iitle Hgader Straylight	Graph Jable Title Hgader Straylight	Graph Jable Title Hgader Straylight	
x-Axis: VVevelength • Bit mone Ok Color v-Axis z-Axis z-Value Use Vie Mod 0 Mat_yeffactb • None • - e e	Name: [dispersion of n of 5102 [therm.] User: Date: [Tu 10/21/2008] Time: [14:12:11] [0] Wavelength: 632.8 nm • • [0] Time : 0.0 min • • [0] Time : 9.0 min • • [0] Time : 9.80 min • • [0] Time : 9.80 min • • Wavelength: \$32.8 nm • • Wavelength: • • •	1.40-	irase Spikes reshold: 10.0 nooth Derive Order: 3 Width: 20
• • • • • • • • • • • • • • • • • • •	Angle of Incid: [70.00 * Temperature: [295.6 K Polarizer pos.: [45.00 Weight (0.1); [1.0000 Sample rotation (Theta; [0.00 * No. of points: 551 x-axis by points: no Range of x-axis: [300.000 Elip [850.000	1.47- 300.0 400.0 500.0 500.0 700.0 500.0 Wavelength [mt]	regions apply Add Clear Edit>>> Cancel Qk

استخراجدادهی توزیع بهصورتفایلASCII

با یک کلیک موشواره، دستهداده انتخاب میشود. در این حالت رنگ دستهداده در پنجره برعکس میشود.

D <u>a</u> ta
400 nm SiO2 / Si (SENTECH reference wafer)
400 nm SiO2 / Si - SENTECH reference sample
dispersion of n of SiO2 (therm.)

از فهرست، "File"و سپس "... Save as" را انتخاب کنید.

Save as				? 🗙
Savejn: 🗀	demo 211008	💌 🔾 🥬	• 🖭 👏	
⊫ n_5i02.txt				
File <u>n</u> ame:			Save	
Save as type:	ASCII (*.txt)	~	Cance	!
Selected: demo	211008			.::

"(ASCII(.txt)، ابه عنوان نوع فایل انتخابکردهو در محل و به نام دلخواه ذخیره کنید.

به این ترتیب،فایل به صورت فایلASCIIذخیره شده که میتوان آن را به برنامههای دیگری مانندExcelیاOriginوارد کرد.

🔊 n_SiO2.txt - Notepad	
<u>File E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp	
<pre>; WAVELENGTH MATREFRACTIVE_INDEX 300.00000 1.49398 302.00000 1.49374 303.00000 1.49374 304.00000 1.49351 304.00000 1.49328 305.00000 1.49282 307.00000 1.49282 307.00000 1.49296 309.00000 1.49214 310.00000 1.49171 312.00000 1.49171 312.00000 1.49149 313.00000 1.49165 315.00000 1.49065 316.00000 1.49044 318.00000 1.49044 319.00000 1.49044 320.00000 1.48944</pre>	
<	> .::

۲- شرح قسمتهای مهم SPECTRARAY

۲-۱- لیست پارامترها

لیست پارامترها،امکان دسترسی مستقیم به تمام پارامترهای تطابق تمام لایههای نمونه و پارامترهای محیطیرافراهم می آورد.این لیست انتخاب و یا حذف پارامترهای، تغییر مقادیر واقعی آنها و تاثیر آنها بر رفتار تطابق راممکن می سازد.دو راه برای باز کردن لیست پارامترها وجود دارد.

- ۱- از ستون نشان گرها:
- ۲- از پنجرهیتطابق: دکمهی"Parameter

Name	Fit	Value	Typ. Diff.	Accuracy	Dig.	View	Tool	Minimum	Maximum	Reset Min.	Reset Max.
[1] Wavelength [nm]		632.8	10.0	0.10	1	¥	3	1.0	100000000.0	500.0	1000.0
[1] Angle [°]	1	70.00	0.50	0.010	2	¥	3	0.00	90.00	10.00	85.00
[1] Time [min]	-	0.00	0.17	0.000	2	×.	SI.	0.00	16666666.67	0.02	1440.00
[1] Temperature [K]		296.6	10.0	0.01	1	2	1	0.0	8273.1	3.1	4273.
[1] Sample rotation [°]		0.00	0.50	0.010	2	V	3	-360.00	360.00	-350.00	355.00
[1] Angle offset [°]	1	0.00	0.10	0.010	2	¥.		-90.00	90.00	0.00	0.0
[1] Wavelength Offset (nm)	1	0.00	2.00	0.010	2	Ľ		-10000.00	10000.00	0.00	0.0
[1] Wavelength Linear	-	1.00000	0.00300	0.000100	5	Ľ	1	-10.00000	10.00000	1.00000	1.0000
Air: Refr. index	11	1.000	0.100	0.0010	3	×		0.001	40.000	1.100	2.00
Air: Absorption		0.000	0.100	0.0010	3	¥		0.000	40.000	0.000	1.00
1] Cau-SiO2 (therm.): Thickness [nm]	1	398.31	10.00	0.100	2	×.	1	0.00	40000.00	0.50	30000.0
Cau-SiO2 (therm.): ND	V	1.458	0.100	0.0010	3	¥	1	-100.001	100.000	1.100	2.00
Cau-SiO2 (therm.): N1	*	32.6	10.0	0.01	1	×	11	-40000.0	40000.0	0.0	20.
Cau-SiO2 (therm.): N2		0.0	10.0	0.01	1	¥.		-40000.0	40000.0	0.0	20.
Cau-SiO2 (therm.): KD	1	0.000	0.100	0.0010	3	¥.		-100.000	100.000	0.000	1.00
Cau-SiO2 (therm.): K1	1	0.000	100.000	0.0100	3	N.		-40000.000	40000.000	0.000	20.00
Cau-SiO2 (therm.): K2		0.000	100.000	0.0100	3	2	11	-40000.000	40000.000	0.000	20.00
	-										1

ستون	توضيح
Name	نام پارامتر تطابق را نشان میدهد.
Fit	نشان میدهد که آیا مقدارپارامترتطابقمییابدیا خیر
Value	مقدار واقعی پارامتر تطابق، مقدار شروع
Typical difference	اینمقداردرشروعفرایند تطابق استفاده میشود.مقدار واقعی به اندازهی⊭ختلاف متداول است.بنابراین، ضخامت واقعی لایه۳۹۸٬۳nm یا۴۰۸٬۳nm یا۳۸۸٬۳nm برای اولین مرحلهی تکرار تطابقاست.اندازهیگامبرایتکرار تطابق، به صورت خودکار تنظیم میشود.مقدار اختلاف متداول باید بین ۵ تا ۲۰٪ مقدار واقعی پارامتر باشد.
Accuracy	وقتی که تغییرات همه پارامترها کم تر از مقدار دقت تعریفشده باشد، فرآیند تطابق متوقف میشود.
Digits	اینپارامتر،تعداد ارقام نشاندادهشده برای هر پارامتر را مشخص میکند.
View	میتوانید به کمکاین پارامترتصمیم بگیرید که آیا پارامترحینتطابق در پنجرهیتطابق نشان داده شود یا خیر.
Tool	یک پنجرهیستون لغزنده را باز میکند که امکان تغییرهمزمانو سادهی پارامترهای تطابق واقعی
	/site: http://maharfanabzar.com قاكس: ۸۸۵۰۰۳۲۵ فاكس: ۸۸۵۰۰۳۲۶

را برای اصلاح دستی مقدار انتخابشده، فراهم میآورد. پایین ترینمقدار مجاز پارامتر Maximum اگر حینتطابق، مقدار کمینه حاصل شود،مجددا در "Reset min":تنظیم می شود. مقدار "Reset Min. باید در محدودهی بین کمینه و بیشینه باشد.در صورتی که مقدار پارامتر طی فرایند تطابق به مقدار کمینه برسد، باید مقدار کمینه به صورت دستی کاهش یابد.

مشابه"Reset Min" است.در صورتی که مقدار پارامتر طی فرایند تطابق به مقدار بیشینه برسد، Reset Max. باید مقدار بیشینه به صورت دستی افزایش یابد.

۲-۲- ستون لغزنده

این ستون، روش راحتی برای پیدا کردن مقادیر اولیه برای پارامترهای تطابق است. این مقادیر در ردیف''Tool'ازلیست پارامترها انتخاب می شوند.

شکل زیر ستون لغزنده را برای پارامتر ضخامت لایهیSiO2نشان میدهد:

می توان به کمک موشواره، ستون لغزنده را جابهجا کرد. وقتی که این ستون در یک موقعیت جدیدبرای یک پارامتر رها می شود، طیفهایPsiوDeltaبا استفاده از مقدار جدید پارامتر، بهروز می شود.

"Animate" یک انیمیشن خودکاردر بازهی"Minimum"تا"Maximum بااندازهیگام"Large step انجام میدهد وپس ازفشار دادن"Stop"، متوقف میشود.

محدوده و اندازهیگامپارامتر در 🛄 تعریف میشوند.

این پنجره امکان تنظیم کمینه و بیشینه محدودهیمجاز و همچنینگامهایکوچک و بزرگ را فراهم می آورد.

Parameter Tool D	etails		×
-Slider details M <u>i</u> nimum: M <u>a</u> ximum:	0.00	<u>S</u> mall step: Large step:	1.000 5.00
	<u>C</u> ancel	<u>о</u> к]

۲-۳- تنظيمات محيطى

مهم ترین و پراستفاده ترین تنظیمات محیطی درادامه شرح داده شده است:

دکمه:Values

⊻alues	Ranges	<u>U</u> nits	Substrate	Inhomog.	Errors
<u>W</u> av	elength 6	32.8 nm		<u>O</u> k	
	Angle 7	'0.00 °		Cancel	
Temp	erature: 2	96.6 K			
Proces	ss time: 🛛	.00 min			
× <u>d</u> ispla	ay environn	nent parar	neters		
🗆 <u>d</u> ispla	y RAE para	ameters			
rever:	se stac <u>k</u>	<u>U</u> se dat	a modulo:	4	

"Wavelength" طول موج مشاهده ينمايش مدل را تعريف مي كند.

"Angle"زاویهیبرخورد،برای مثال استفادهشدهبرای"Simulation"را تعریف میکند.

دکمه:Ranges

Environment	parameters			>
⊻alues <u>R</u> ang	ges <u>U</u> nits	<u>S</u> ubstrate	<u>I</u> nhomog.	<u>E</u> rrors
Active ranges				
	Minimum	Ma×	imum	
<u>W</u> avelengt	th: 280.0 nm	850	.0 nm]
<u>A</u> ngl	le: 0.00 °	90.0	IO "]
<u>T</u> emperatur	re: 0.1 K	600	0.0 K]
<u>P</u> rocess tim	ne: 0.00 min	100	0.00 min]

"Wavelength"می تواند برای محدود کردن بازهی تطابق طیف استفاده شود. در صورتی که مدل نتواند اندازه گیری های خیلی کم تر از ۴۵۰nm را انجام دهد، می توانمحدوده ی طول موجرا به ۸۵۰nm-۴۵۰ محدود کرد.به این تر تیب، از محدوده یطیفپایین تر از ۴۵۰nm صرف نظر شده یا نمایش داده نمی شود.

توجه:این محدودیت در مورداستخراجداده نیز اعمال می شود. درمواردی کهباید تمام بازه یطول موجاستخراج شود، باید بازهی طول موج به بازهی اندازه گیری شده گستر ش یابد.

دکمه:Units

¥alues	Ranges	<u>U</u> nits	Substrate	Inhomog.	<u>E</u> rrors
These u	nits are use	d to dis	play values:		
Wav	elength: 🚺	m 💌	Thickness:	nm 👱	
Angle	of incid.: 「	-	Growth rate:	nm/s 🛃	
Temp	perature: K	-	Eraction:	-	
Proce	ss time: 🗖	nin 🗾		Ok]

"Wavelength" واحد نمایش طول موج بر حسب "nm"، انرژی فوتون "eV" یا عددموج "l/cm" را تعریف می کند.

دكمه:Substrate

Environment parameters						
<u>V</u> alues <u>R</u> anges	<u>U</u> nits	Substrate	Inhomog.	<u>E</u> rrors		
incoherent layer						
Substrate thickness: 1.000 mm						
Beam diameter: 4.000 mm						
Detector apertu	re: 4.00	10 mm	1			
No. of backside re	fl.: 0	-				
thick layer detect	ed: none	;				
0∨erlaye	rs: 0	Fraction	: 1.000			
Filling materia	al: 0v.	Air				

از این قسمت برای مدل کردن تاثیر انعکاسهای پشتی در مورد**زیرآیندهای شفاف**استفاده میشود.

پیشنهاد:برای اجتناب از انعکاس پشتی (مدلسازی آسانتر)،میتوان پشت نمونه را با خراش دادن زبر کرد.

دكمه:Inhomogeneitites

Environ	nent para	neters			×			
∐alues	<u>R</u> anges	<u>U</u> nits	<u>S</u> ubstrate	Inhomog	. <u>E</u> rrors			
🗵 use Thi	🗵 use Thickness variation within measurement spot							
Layer: Cau-SiO2 (therm.)								
21	hickn. 1	n	steps:	5				
use limited wavelength resolution								
Resolution: 0.0 nm steps: 5								
use non parallel measurement beam								
1	Focus: 3	.00 "		steps:	5			

از این دکمه برای مدل کردن نقایص نمونه یا دستگاه استفاده میشود.

".... use Thickness variation"؛ یکغیریکنواختی لایه (تغییر ضخامت) را در اندازه نقطهی بیضی سنج شرح

مىدھد.

دکمه:Errors

Environment parameters							
<u>V</u> alues	<u>R</u> anges	<u>U</u> nits	Substrate	<u>I</u> nhomog.	<u>E</u> rrors		
🗆 enable	enable error calculation after fit						
Calculati	on type for (lerivative	es: Plus/mir	ius epsilor	· <u>-</u>		
🗵 use pi	🕱 use precision of (s1,s2) to get precision of (Psi, Delta)						
Precision	Precision in measured data for error calculation:						
s1, s2:	0.0020		None:	1.0000			
Psi [°]:	0.0100		Simulation	: 1.0000			
Delta [°]:	0.0100		R, T:	0.0050			

این دکمه برای محاسبه خطای محاسبهی مورداستفاده برای نمایش ماتریس ارتباط استفاده می شود. نیازی به تغییر هیچ کدام از این مقادیر نیست.

۲-۴- شبیهسازی

مثال زیر قابلیتهای قسمت"Simulation"نرمافزارSpectraRay IIرا نشان میدهد.

قسمت''Simulation''مبتنی برمدل نوری<mark>جاری</mark>بنا میشود. برای مثال، این قسمتمیتواند مقادیر مختلف مانند طیفهایR،Delta،PsiیاTرا برای زاویههای دلخواه برخورد در محدودههایطیفیدلخواه، محاسبه نماید.

سوال:

رفتارطیفهای۵۰۴در محدودهیطیفی۵۰۳۳–۳۰۰ برایSiO₂/Si برای ضخامتهای مختلف لایهth=۰...۰۲۰nm چگونه است؟

چينش لايهها:

هوا،nولاثابت

SiO₂، لايەيكوشى

Si، لايەيغايل

شىبيەسازى:

SiO2بر حسبطول موج و ضخامت لایهیDelta،Psi

محدوده یطول موج:۸۵۰nm...۳۰۰

زاویهیبرخورد: ۷۰ درجه

ضخامت لایهی۲۰nm:SiO₂ . . . ۰، پلههای

ايجاد مدل

	<u>M</u> odel			
		Air	NK Layer	n=1.0000
1	20.00 nm	Cau-SiO2 (therm.)	Cauchy Layer	n=1.4610 🔒
1	∖	Silicon VIS+NIR	File Layer	n=3.8717 k=0.0158

ضخامت واقعیSiO2در مدل مهم نیست،زیرابا انجامشبیهسازی به صورت موقت تغییر میکند.

تنظیمات محیطی را انجام دهید:

زاویهیبرخورد را در $\Phi=\gamma \cdot \circ$ تنظیم کنید.

شبيەسازى

Simulation	×
Environment: Phi=70.00 ° Wavelength=632.8 nm	Modulo=4
1 Cur⊻e parameter —3	Trace parameter —
[0] Wavelength [nm]	[1] Cau-SiO2 (therm.): Thickness [nm]
<u>f</u> rom 300.000 <u>t</u> o 850.000	from 0.000 to 20.000
curve <u>s</u> tep: 1.000	trace step: 5.000
4	2
Calc unit: Delta(Psi)	149.012 29.022 Type: Multi
file: C:\GRAMS\Data\Test.dat	Image: keep Image: colors first Help Image: colors Image: colors first Cancel Image: colors Cancel Display Quit

() "Curve parameter" روی "Wavelength"تنظیم می شود (محور Xرا تعریف می کند).

محدوده يطول موج ۸۵۰ nm-، پهنايگام ۱nm

- ۲) "Type" (۲) ثنظیم می شود (امکان شبیه سازی همزمان پارامتر دوم را فراهم می کند).
 - ۳) "Trace parameter" روی"(Trace parameter" (۳) ثنظیم می شود.

محدودهی ضخامت:۲۰nm-۰۰ اندازهی گام ۵nm

- ۴) "Calc unit" (۴ دروی(Psi)تنظیم می شود (محور yرا تعریف می کند).
- ۵) "Keep" روشن می شود تا داده های محاسبه شده را در زیر پنجره ی Data فخیره کند.
- ۶) "Calc" (۶) فشار داده می شود تا محاسبه را انجام دهد؛ نتایج در بخش "Data" ذخیره می شوند.

نتايج شبيهسازى

SiO2 / Si

SiO2 / Si

اثرات روی دلتا خیلی قویهستند.هر یک نانومتر در ضخامت لایه، حدود ۴ درجه تغییر در دلتا به وجود می آورد.همین موضوعدلیل حساسیت زیاد بیضی سنجی به ضخامت لایه است.

۳- تبدیل واحدهای مختلف طول موج یا انرژی

/site: http://maharfanabzar.com تلفن: ٨٨٥٠٠٣٢٦ فاكس: ٨٨٥٠٠٣٢٩

تبدیل طولموج به انرژی فوتون و برعکس(eV↔nm)

 $\Delta \cdot \cdot nm = 7 \cdot \cdot \cdot \cdot cm^{-1}$

 $\cdots nm = \cdots, \cdots cm^{-1}$

 $\forall \cdots nm = \Delta, \cdots cm^{-1}$

۴- وارد کردن و استخراج داده
 ۴- واردکردندادههای اندازه گیری شده یخارجی

می توان نتایج اندازه گیریانجام شدهتوسط دستگاه هایدیگرماننداندازه گیری های باز تابش، عبوریا بیضی سنجیرا به نرمافزار SPECTRARAY IIوارد کرد.

دادههای خارجی باید به صورت دستهدادههایASCIIباشند. توصیه می شود از پسوند.txt*در انتهای نام فایل استفاده کنید.

باید دادهها به ستونهای مختلف تقسیم شوند.

اولين ستون حاوى محور xاست. معمولا اين محور، طول موج است.

می توان از واحدهای زیر برای محور xاستفاده کرد:

- طول موج /nm
- انرژی فوتون /eV
 - عددموج /¹⁻cm

ستونهای بعدی حاوی دادههای محور yهستند. برای محور yمی توان از واحدهای زیر استفاده کرد:

- · انعکاس: ۱ . . . (نمی توان از ۰٪ تا ۱۰۰٪ استفاده کرد)
 - عبور: ۱ . . . (نمی توان از ۰٪ تا ۱۰۰٪ استفاده کرد)
 - طيفهاى¥و∆/°؟
 - $cos \Delta tan \Psi \bullet$
 - ثوابت فوريه s2،s1

ردیفهای جداگانه، توسط spacebarیاtablز هم جدا می شوند.

نیازی به خط عنوان نیست.

مثال: یک اندازه گیری عبور را وارد کنید

مثال زیر فرمت فایل را برای یک اندازه گیری عبوردر محدودهی۹۲۰nm-۳۰۰ نشان میدهد. اولین ستون حاوی طول مرحب معاوی طول موج برحسب ۱۳mست. ستون دوم حاوی دادههای عبور است:

📕 Transmiss	- O ×			
Datei Bearbe	iten	Format	Ansicht	2
B00.37640 301.18359 301.99081 302.79800 303.60519 304.41241 305.21960 306.02679 306.83401 307.64120 308.44839 309.25562 310.06281 310.87000 311.67719 312.48441 313.29160 314.09879 314.90601 315.71320 316.52039	0.0000000000000000000000000000000000000	41495 41700 41954 42218 42218 422926 42707 42926 42707 42926 43027 43137 43231 43289 43361 43289 43361 43562 43765 43799 43941		
1				► //

اين فايلبه روش... Menu→File→Loadبه نرمافزارSPECTRARAY IIوارد مىشود.

	on.txt		
1			
Datei <u>n</u> ame:	Transmission.txt		Ü <u>f</u> fnen
Dateityp:	ASCII (*.txt)	•	Abbrechen
Selected: Tra	nsmission.txt		
Size	e: 14839 Bytes		

باید واحدفایلهای واردشده را تنظیم کرد. روی اندازه گیری عبوریدو بار کلیک کنید و دکمهی"header درا انتخاب كنيد.

<u>G</u> ra	ph	Iable	Ţitle	e) H <u>e</u> ad	er [<u>S</u> trayligh	ıt	
×-A	xis:	lone	1			<u>a</u> ll	none	<u>O</u> k
1	Color	Y-Axis None	•	z-Axis None	-	z-Value	Vie Vie	Mod 🛋
								*
•								× ====================================

باید تنظیمات زیر را برای این فایل عبوریانجام داد:

محور Wavelength":x،

محور Transmission":y،

محور T:"Phi":رواحد زاویه یبر خورد اندازه گیری T)

مقدارz:''0.00''(مقدار زاویهیاندازه گیری)

Data	a view							_			
<u>G</u> ra	ph ľ	<u>T</u> able	ĬI	itle] H <u>e</u> ad	er	<u>S</u> trayligh	t			
x-A	xis:	Wavele	ength	•]		<u>a</u> ll	non	e	<u>0</u> k	
1	Color	γ-, Transn	Axis hission	▼ Phi	z-Axis	•	z-Value 0.00	Use 🖌	Vie ✔	Mod	▲
										-	-
•										•	<u>×</u>
						-			_		_

حالا این دستهداده را میتوان برای فرآیند مدلسازی، مورد استفاده قرار داد.

۲-۴- استخراجدادههای اندازه گیری یا شبیهسازی

- . . .استخراجدادههای شبیهسازیشده
- . . .استخراجدادههای اندازه گیریشده
- . . .استخراجدادههای مدلسازیشده
 - ۵- مثالهایی از فرمول توزیع

رابطهیتوزیع (به طور اختصار: توزیع)، وابستگی ضریب شکست^۱۰و ضریبمیرایی^۲k^۲ طول موج را تعریف $.k(\lambda)$ می کند: (λ) م

انواع مختلف مواد، توزیعهای متفاوتی نشان میدهند. چهار نوع مادهیمختلف زیر، انواع مختلف رابطههای توزیع را نشان میدهند:

برای انواع مختلف ماده، به توصیفهای ریاضی متفاوتی نیاز است. فصل بعدی، شمای کلیروابط توزیع در SpectraRay IIرا ارایه می کند.

' refractive index

^r extinction coefficient

۵-۱-۵ شمای کلیفرمولهای توزیع و انواع لایهها

کرد:	مدل وارد	جدید به	یک مادہی	مىتوان	."New"	نشان گر	دادن	با فشار
------	----------	---------	----------	--------	--------	---------	------	---------

مثال	مورداستفادهبرای	توزيع	L
فقط هوا	توزيعثابت	k و اثابت	Н
SiO ₂ , Al ₂ O ₃ , Si ₃ N ₄ , TiO ₂	مواد دىالكتريك شفاف		
PMMA	فوتورزيست	كوشى	Η
BK7، كوارتز	شيشه		
Si ₃ N ₄ , TiO ₂	مواد دىالكتريك جاذب	· 1 51"	п
a-Si, a-C	موادغيربلورى	ئات–تورىس	п
Au, Ag, Cu, Cr, Ni	فلزات		ц
ITO, ZnO:Al	TCO(اکسید هادی شفاف)	درود-تورنس	н
مناسب برای همه	جدول طولموج،k،n		п
Si, Ge, GaAs, کوارتز	زیرآیندهای بدون پارامترهای تطابق	فایل-لا یه	п
c-Si, c-Ge, c-SiGe	نيمههادىهاى غيرمستقيم بلورى		
poly-Si	نیمههادیهای غیرمستقیم چندبلوری	لنگ-لورنس	Μ
MEH-PPV, P3HT	پليمرهايمزدوج(OLED, OFET)		
SiO ₂ , SiN, CH-bonds	نوارهای جذبی (ارتعاشی) در MIR	برندل	Μ
SiO ₂	شبیه کوشی ولی برای محدودهیطیفی وسیع- تر (VIS+NIR)	سلمير	М
GaAs, GaN, AlGaN, ZnSe	گاف انرژی نیمههادیهای مستقیم، همچنینII/VI	تنگوی III/V	М
ITO, ZnO:Al, SnO ₂ :F	TCO(اکسید هادی شفاف)	ھامبرگ- سرنليوس	L
GaAs, InP, InGaAsP	نیمههادیهایIII/V(خاص)	افروموويتز	L
مناسب برای همه	توزيعهاي غيرعملي جديد	فرمول	L
AF45	خاص برای شیشههای شات	شیشهی شات ^۱	L

در جدول پایین لایهیEMAیک لایهی پر کاربرد است که بهتر است به جدول بالا افزوده شود.

' Schott

L	Layer type	Used for	Example			
н	EMA (effective medium approximation)	Mixture of two materials Roughness Interface Gradient	mixture: Air / layer mixture: layer1 / layer2			
М	Biaxial anisotropic	Direction dependent dispersion	Crystalline quartz			
М	Periodical group	Bragg reflectors	20x (SiO ₂ / TiO ₂)			
L	Table (2D)	Parameter dependent data of e.g. - Temperature - composition	Si (0 deg C … 1000 deg) Si _x Ge _{1-x}			
L	Homogeneous growing layer	In-situ applications, thickness changes with time	Good for all			
L	Nuclei growth	In-situ applications, island growth	Metallic film growth			
L	Epitaxial Si profile	MIR, Si epitaxial layer growth	Si doping concentration and gradient			

L: Level of usage, High (used very often), Medium (sometimes) Low (seldom)

۵-۲- توزیع کوشی

توزيع كوشى غالبا براى موادشفاف مانندمواددىالكتريكمثلSi₃N₄،Al₂O₃،SiO₂وTiO2ستفاده مىشود.

پنجرهیکوشی به شکل زیر است:

سه ضریب کوشیN1،N0وN2وجود دارد که توزیع ضریب شکستnراتوصیف میکنند.

علاوه بر این، سه ضریب کوشیK1،K0وK2وجود دارد که توزیع ضریب میراییkرا توصیف میکنند. معمولا برای توصیف مواد شفاف،K2وK1،K0 مساوی صفر قرار میدهند.

فرمول کوشی به صورت زیر است:

$$n(\lambda) = n_o + C_0 \frac{n_1}{\lambda^2} + C_1 \frac{n_2}{\lambda^4} \qquad \lambda \text{ in nm}$$
$$k(\lambda) = k_o + C_0 \frac{k_1}{\lambda^2} + C_1 \frac{k_2}{\lambda^4}$$
$$C_0 = 10^2 \qquad C_1 = 10^7$$

که در آن مقدار $n_0(k_0)$ یک مقدار ثابت است و به طول موج بستگی ندارد.

n1(k2)وابسته به طولموج هستند. این ضرایب، توزیعضریب شکستn(ضریب میراییk) را تعریف می-کنند.

توجه:غالبا₀nبا ضریب شکست در ۶۳۲٬۸nm اشتباه می شود.

توزيعطبيعى:

در طولموجهای کوتاهتر،ضریب شکستافزایش مییابد.نمودار زیر، توزیعطبیعیSiO₂را نشان میدهد. ضریب شکست از ۱٬۴۶هدر۸۵۰nmهج/۱۹۹هدر۱٬۴۹هدوار ۳۰۰nmهافزایش مییابد.

به صورت کلی، وقتی که ضریب شکست افزایش مییابد، توزیع بهتر می شود. در شکل زیر که توزیع را برای مواد دی الکتریک مختلف نشان می دهد،این رفتار مشاهدهمی شود.

به منظور به دست آوردن توزیعطبیعی، نباید مقادیر n₂وn₁منفی باشند. برای به دست آوردن مقادیر مثبت، می-توانکمینه مقدار در لیست پارامتر را مساوی صفر قرار داد (در شکل زیر با پیکان قرمز نشان داده شده است).

F	Fit data - Cau-SiO2 (therm.)														
[Name	Fit	Value	Typ. Diff.	Accuracy	Dig.	View	Tool	Minimum	Maximum	Reset Min.	Reset Max.	Data 0	Data 1	-
	Thickness [nm]	V	398.31	20.00	0.100	2	V		🍎 👘	40000.00	0.50	30000.00	0.000	0.000	
	NO	V	1.452	0.100	0.0010	3	¥.		0.000	100.000	1.100	2.000	0.000	0.000	
	N1	V	36.0	10.0	0.01	1	¥		0.0	40000.0	0.0	20.0	0.000	0.000	
	N2 = 0.0 100.0 0.01 1 = 0.0 40000.0 0.0 20.0 0.000 0									0.000					
	KD		0.000	0.100	0.0010	3	¥.		-100.000	100.000	0.000	1.000	0.000	0.000	
	K1		0.000	100.000	0.0100	3	¥.		-40000.000	40000.000	0.000	20.000	0.000	0.000	
	K2		500.000	100.000	0.0100	3	V		-40000.000	40000.000	0.000	20.000	0.000	0.000	
						Eri	int	<u>C</u> an	cel <u>H</u> el	p 🖸	К				

در غیر اینصورت،توزیعممکن است منفی شود که توزیع غیرطبیعی نامیده می شود.فقط وقتی که ضریب میرایی ای این این یک حل فیزیکی صحیح و مجاز است. وقتی که امساوی صفر باشد، اینیکحل فیزیکی غلط است.

توزيع غيرطبيعي:

در صورتی که ماده کاملا شفاف نباشد، رفتار توزیع درشروع جذبتغییر میکند.

پیکان<mark>قرمز</mark>، نشاندهنده یمحدوده یطیفی است که در آنضریب شکستدارایتوزیع طبیعیاست.

پیکان آبی، نشان دهنده یمحدوده یطیفی است که در آنضریب شکستدارایتوزیع غیرطبیعیاست. این رفتار وقتی مجاز است که مادهدارایضریب میرایی k(با پیکان سبز مشخص شده است)باشد.

وقتی که لازم است این رفتار به صورت صحیح توصیف شود، معمولا از فرمولهای توزیع متفاوتی (مانند تاک-لورنس) استفاده می شود.

انجاماین کارضروریاست زیرا یک رابطهی فیزیکیموسوم بهکرامرز-کرونیگ(KK)بینnولاوجود دارد.یعنی،اگر توزیعkدر تمام محدودهیطیف (از صفر تا بینهایت) شناخته شده باشد، میتوان توزیعnرا با استفاده از انتگرال کرامرز-کرونیگ محاسبه کرد.

توزیع کوشی از رابطهKKپیروی نمیکند و باید به صورتی که در بالا توضیح داده شد، جایگزین شود.

۵-۳- نوسان گر تاک_لورنس

فرمول توزیع نوسان گر تاک_لورنس(TL)غالبا برای توصیف مواد دیالکتریک شفاف با جذب در محدوده طول موج کوتاه، استفاده می شود. هم چنین می توان از آن برای توصیف توزیع موارد زیر استفاده کرد:

¹ Kramers-Kronig

[/]site: http://maharfanabzar.com تلفن: ۸۸۵۰۰۳۲۵ فاکس: ۸۸۵۰۰۳۲۶

- نوارهای جذب در پلیمرها (مانند پلیمرهای مزدوج در کاربردهایOLED)
 - نیمەھادىھايغيربلوريمانندa-Si
 - كربنغيربلورى

نمودار زیر توزیع nو kبرای نیترید غنی ازSi توصیف شدهتوسط یکنوسان گرTLرا نشان میدهد. ایننمودار توزیع اصلی مواد دی الکتریکدارای جذب درمحدوده یطول موج کوتاه رانیزنشان میدهد.

محور X، طولموج بر حسبnmاست.

پارامترهای نوسان گرTLبرحسبeVهستند. بنابراین، توصیه می شود که واحد مقیاس طول موج از nmبه انرژی فوتون(eV)تغییر یابد.

از

محور X، انرژی فوتونبر حسب vاست.

چهار پارامتر وجود دارند که توزیعnوkرا توصیف میکنند.

توصيف پديدهاياين پارامترها در جدول زير آمده است:

مقادیر بزرگ (c<<۱٬۰)منجر به نوسان گرهایپهنمی شوند.

مثال عمومینوسان گرTLبرای نشاندادن اثر پارامترها:

Tauc-Lorentz												×
Name: General - Tauc Lorentz		Thick	mes	ss:	0	.00 nm				<u>E</u> 1(Inf.)	: 1	.000
		Na	Llev		_	Eale\/1	8	A1-01/1	_	E01-3/1	_	Clavia
		1	Usi	-	/	25	1	10	1	COIGAIL		
		-	res	-		2.0	and i	10		5		0.2
		3	10	-	- 1	- 1					-	
		4	10	-		-						-
1.2-		5	no	-								-
		6	no	-		-				-	-	-
		7	no	-						-		
		8	no	-				-		-		
-		9 1	no	-	-	-		-		-		
stan		10	no	-	1	-		-		-		
5 0.8- E		11 1	no	-		-				-		-
E 1 ⊑0		12	no	-	1	-		-		-	- 2	
		13	no	-		-				-		-
		14 1	no	-	-	-	-			() ¥	-	-
. (1)		15	no	-	-	-	-	-		-	-	-
		16	no	*	-	-		-		-	-	-
		17	no	-		-		-		-	+	-
		18	no	-	12	-		-		-	-	
		19 1	no	•		-		-		-		
-g		20	no	•	37	-		-				
		21 1	no	-	-	-				-	-	-
0.0-												
1.5 2.0 2.5 3.0 3.5	4.0											
Energy [eV]												
n k												
IX n IX k □ e1 □ e2	More Con	nmer	nt >:	>>		Eit >>>		Help		<u>C</u> ancel		Qk

۵-۴- نوسان گر درودلورنس

نوسان *گ*ر درودـلورنس، تر کیبی از دو نوع توزیع است: جذب درود حمل کنندههای بار آزاد (<mark>بخش ۴–۴–۲</mark>) و مدل نوسان *گ*ر لورنس (<mark>بخش۴–۴–۱</mark>).

واحد پارامترها در توزیعنوسان گر درود لورنس، عددموج است. بنابراین، بهترین راه، تغییر مقیاس طول موج به عدد طول موج ا

نوسان گردرود۔لورنس میتواند برای توصیف توزیع فلزاتی مانند آلومینیم، تانتالم یا نقره استفاده شود. همچنین، برای اکسیدهای شفاف مانندITOیاZnO:Alیزمناسب است.

شکل زیر، ظاهر پنجرهیمدلنوسان گر درود لورنس را نشان میدهد.

جعبهی<mark>قرمز</mark>، دو پارامتر مدلنوسان گردرود را نشان میدهد.

جعبههای آبی، سه پارامتر مدلنوسان گرلورنس را نشان میدهند. میتوان تا ۱۰نوسان گرلورنس را به صورت همزمان، استفاده کرد.

۵-۴-۱-نوسان گرلورنس

نوسان گرلورنس شامل سه پارامتر برای موقعیت طیف،استحکامو میرایی است. مشارکت آن در تابع دیالکتریکعبه صورت زیر است:

$$\varepsilon = 1 + \frac{\Omega_P^2}{\Omega_0^2 - v^2 - i\Omega_\tau v}$$

پارامترهایاین رابطهدر جدول زیر معرفی شدهاند:

نوسان گرلورنس	
شرح	پارامتر
فرکانس مرکزینوسانگردر واحد ^{1۔} cm	Ω_0
قدرتنوسان گر(دامنه)	Ω_{P}
میرایینوسان گر	$\Omega_{ au}$

۵-۴-۲- جذب حامل آزاد درود

غلظت حامل آزاد در یک ماده منجر بهنوسانیبا فرکانس مرکزی•=00می شود. مشارکتاین پارامتردر تابع دیالکتریکعبه صورت زیر است:

$$\varepsilon = 1 + \frac{\omega_p^2}{-v^2 - i\omega_r v}$$

دو نمودار بعدی، تاثیر غلظت حامل(N)و تحرک(µ)روی توزیعnولارا برای یک نمونهیاکسید هادی شفاف مانندITO(اکسید قلع آلاییده با ایندیم^۱) نشان میدهد.

kوn تاثير غلظت حامل Nروى توزيع

→با افزایش غلظت حامل، شروع جذب به سمت عددموجهای بالاتر (طولموجهای کوتاهتر)،جابهجا می شود.

¹ Indium doped TinOxide

kتاثیر تحرک(μ)حامل روی توزیع و

←با افزایش تحرک حاملهای آزاد، ساختار، تیزتر میشود.

۵-۵- مدلنوسان گربرندل

مدلنوسان گربرندل برای توصیف نوارهای جذبی ارتعاشی مولکولها در محدودهیطیفMIRطراحی شده است. مبنای آن، مدلنوسان گرهارمونی است. به دلیل محیط ناهمگن در موادغیربلوری، فرکانس مرکزی هرنوسان گرتحت تاثیرقرار می گیرد.نوسان گربرندل، انحراف استاندارد توزیع گوسیاز فرکانس مرکز ارتعاش هارمونی را توصیف می کند.

علاوه بر این، توصیف لایههای فلزی نیز مفید است.وقتیفلزات خاص مانند طلا با استفاده از مدلنوسان گربرندل توصیف می شوند، فوایدزیادینشان می دهند.

وقتی که انحراف استاندارد صفر میشود،درست مانند مدلنوسان گرلورنس،نوسان گربرندل تبدیل به یکنوسان گر هارمونی استاندارد میشود.

وقتی که میرایی ارتعاش گر هارمونی صفر شود و انحراف استاندارد صفر نباشد،نوسان گربرندل به شکلنوسان گر گوسیدرمیآید.

۶- راهنما براینوشتنscripts

می توان در نرمافزار SPECTRARAY، از scriptsبرای فرآیندهای خودکار استفاده کرد. می توان از آنها برای انواع مختلف کاربردها مانند اندازه گیریها، تطابق،وارد کردنواستخراجداده به صورت خودکار، کمک گرفت.در این بخش، شمای کلی نحوه یساختscriptsبا استفاده از مثالهای کوتاه، ارایه می شود.

۶-۱-۶ شروع ویرایش گرscript برای ساخت یکscript جدید

ویرایش گر scriptرا می توان به دو صورت باز کرد:

- Menu \rightarrow Extra \rightarrow Applications
 - کلیک روی نشان گر script(🖗)

"Application runner" شروع می شود که احتمالا scriptsموجود را نشان می دهد:

Applications		
<u>G</u> roup:	Applications:	
all	Example: Save *.spc file	<u>R</u> un
		<u>E</u> dit
		Delete
		<u>N</u> ew script
		New Dialog
		Quit

"New script"، ویرایش گرscriptرا باز می کند که می توان scriptsرا در آن توسعه داد، اجرا،وارد یا ذخیره کرد.

title= <ne< th=""><th>ew application></th><th></th><th>-</th></ne<>	ew application>		-

در ابتدا، عنوانی تعریف می شود که می تواند در پنجرهی "application runner" نمایش داده شود. script مورت خودکار و با استفاده از نامانتخاب شدهتو سط SPECTRARAY II، ذخیره می شود. برای تهیه یاولین مثال، عنوان به صورت زیر تعیین می شود:

;title=Example 1:10 consecutive fits

ویرایش گر بستهشدهوscriptجدید به صورت یک ورودی جدید در "application runner؛ ظاهر می شود.

Applications		
<u>G</u> roup:	Applications:	
all	Example 1: 10 consecutive scripts Example: Save *.spc file	<u>R</u> un

script-۶- مثالهای

script ۱-۲-۶برای تطابقهای خودکار متوالی بیشمار

در مورد مقدار زیادی از پارامترهای تطابق، غالبا بهترین تطابقدر یکباراجرای تطابقپیدانمی شود. به جای آن،می توان تعداد دل خواهاز اجراهای متوالی تطبیق رابا استفاده از یک scriptانجام داد.

این مثال، با استفاده از دوscriptsمتفاوتبرنامهریزی می شود. اولی،script کوچکرا نشان می دهد و دومی از یک حلقه برای اجرای فرایند تطابق، استفاده می کند.

دستور scriptکه برای اجرای فرایند تطبیق استفاده می شود، "autofit"نامدارد. برای این دستور، پارامتری وجود ندارد.

scriptکوچک:

script کوچکفقطشامل ۱۰ بار کپی کردن دستور "autofit"در ویرایش گر scriptاست.هیچ پارامتری برای این دستور وجود ندارد.Scriptجدید"Edit 10 consecutive fits"باز می شود.

editor - c:\G	RAMS\Script\A	ppl0000.sci	r i i			
;title=Exam autofit autofit autofit autofit autofit autofit autofit autofit autofit	ple 1: 10 cons	ecutive scri	pts			
Load	Save <u>as</u>	<u>D</u> ebug	<u>R</u> un	Find	Find Next	₹ Quit

وقتی که یک فایل آزمایش حاوی دادههای اندازه گیری شده بار گذاریمی شود، با فشار دادن "Run"، مدل و پارامترهای تطابقscriptجرا می شود.

اجرای موفقیت آمیز script، با ظاهر شدن پنجره یکوچکیحاویاطلاعاتی در مورد پیشرفت اجرای تطابق، نشان داده می شود.

Fit		>
[1,1] SiO	2 : Thickness 391.419 SiO2 : NO 1.457 SiO2 : N1 33 733)
No : 64	I SD- 0 78501	
110 04		

می توان قبل از اتمام خودکار script، آن را به کمک دکمهی"Ctrl"متوقف کرد. سپس پنجرهای ظاهر می شود تا لغو فرایند را تایید کند.

	<u> </u>
cript execut	ion?
<u>N</u> ein	
	cript execut <u>N</u> ein

scriptبزرگ⊣ستفاده از حلقه:

نمی توانهمانندسایر زبانهای برنامهنویسی،بر اساس ساختار 'for . . . next' یکحلقه ایجاد کرد. حلقهدر این حالتبا استفاده از 'abel' (مورداستفادهبرای پریدن به درونscript)و دستور 'fi' انجام می شود. علاوه بر این، متغیرها برای کنترل تعداد اجراهای تطابق و تصمیم گیری در مورد خاتمه script، وارد واستفادهمی شوند. شکل زیر،script ر حال استفاده از حلقه را نشان می دهد:

editor - c:\GRAM5\Script\Appl0000.scr	
title=Example 2: 10 consecutive scripts using a loop	-
integer i,j	
i = 0 j = 10	
Label1:	
autofit	
i = i+1	
if i <j label1<="" th=""><th></th></j>	
<u> </u>	•
Load Save <u>as</u> <u>D</u> ebug <u>R</u> un <u>Find</u> Find <u>N</u> ext	Quit

این همانscriptولی با یادداشت است:

```
;title=Example 2: 10 consecutive scripts using a loop
; declaration of the integer variables i and j
integer i,j
; assigning start values:
; number of first run
i = 0
; amount of fit runs
i = 10
; This is the beginning of the loop using the label command, the label ends with a colon ":"
Label1:
autofit
;the variable i is incremented
i = i + 1
; now it is checked whether I is still lower than j, then the script jumps to Label1
; here no colon ":" is used at the end of Labe1
if i<j Label1
```

اکنوناینscriptدقیقا مانندscriptکوچک عمل میکند. مزیت آن،این است کهبا تغییر مقدار متغیرز،به آسانیتعداد اجراهایتطابقتغییرمیکند.

لطفا از قوانین زیر برای تولیدscriptتبعیت کنید:

۶-۲-۲ محاسبه یجمع تمام لایه های نازک در یک نمونه

گاهی، ضخامت کل یک نمونه موردنظر است. در چنین مواردی، استفاده از ماشین حساب و جمعزدن ضخامت تماملایه ا به صورت دستی، روشمناسبینیست.scriptزیر به انجام خودکار این فرایند، کمک می کند.

<u>M</u> odel	
	Air
105.37 nm	SiO2 - Cauchy
136.94 nm	TiO2 - Cauchy
24.71 nm	SiO2 - Cauchy
50.16 nm	Y2O3 - Cauchy
N,	BK7 - Cauchy

چیدمان زیر برای جمعزدن ضخامت لایهها استفاده شده است.

scripts، مقدار لایههایچیدهشده در نمونه راخوانده، آنها را جمعزدهو حاصلجمع را در یک پنجره چاپ میکند. یادداشتهای اضافی برای تبدیل متغیرهای نقطهیشناور به متغیرهای رشتهای استفاده میشوند.

L

editor - c:\GRAMS\Script\Appl0001.scr	
;title=Example 03: Sum of all layer thickness in a stack	-
integer Layers,i double th,thtotal string sthtotal	
i = 0 th = 0 thtotal = 0	
CountModelLayers 0 Layers Layers = Layers - 1	
Label1: i = i+1 GetModelLayerThickness 0 i th thtotal = thtotal + th if i <layers label1<="" td=""><td></td></layers>	
dbl2str thtotal sthtotal 2 message Total_stack_thickness:_\$sthtotal\$_nm	
Load Save <u>as</u> <u>D</u> ebug <u>R</u> un <u>Find</u> Find <u>N</u> ext	Quit

باید توجه داشتکه نتیجهیشمارش دستور "CountModelLayers"که لایهها را می شمارد، «۴»است و نه «۵»،زیرا شمارش از «هوا»به عنوانلایه «صفر» شروعشدهو با «زیر پایه» به عنوان لایه ی «۵» تماممی شود.

شکل زیر، نتایج حاصل از اجرایscriptرا نشان میدهد:

اینscriptبا یادداشتهای زیر است:

;title=Example 03: Sum of all layer thickness in a stack integer Layers,i ; floating points variables are declared using "double" command: double th,thtotal ; a string is declared which can be printed out in a window: string sthtotal ; the starting values are assigned

i = 0th = 0thtotal = 0; the amount of layers in the first experiment (mostly there is only one) are counted ; the experiments are counted starting with "0" ; the result is stored in the variable "Layers" CountModelLayers 0 Layers Layers = Layers - 1 Label1: i = i + 1GetModelLayerThickness 0 i th thtotal = thtotal + thif i<Layers Label1 ; the double variable is converted into a string. The digits are cut to 2 digits dbl2str thtotal sthtotal 2 message opens the result window ; "_" underscores are used to print a spacebar ; the variable is put in \$\$ to give the content of the variable message Total_stack_thickness:_\$sthtotal\$_nm

۶-۲-۳-وارد کردندادههای خارجی با تعیین واحد

قبلا توضیح داده شد که چگونه دادههای اندازه گیری شده یخارجی را که به صورت دادهیADCIIوارد کنید. این نوع داده برای مثال شاملدو ستون دادهی طول موج و انعکاساست.scriptزیر نشان می دهد که چگونه واحدها را با استفاده از scriptتعیین کنید.

فرضبر این استکه بعداز وارد کردندستیدادهها، دادههای واردشده به آخرین موقعیت در بخش "Data" فرضبر این استکه بعداز وارد کردندستیدادهها، مربوط بهاندازه گیریانعکاسدر زاویهیبرخورد Φ = Λ هستند.

D <u>a</u> ta	
Si02 / Ti02 / Si02 / Y203 / BK7	A
external measured reflectivity	

هنوز اطلاعات مهم اندازه گیری تنظیم نشدهاند:"None"

- x-Axis: None(این تبدیل می شود به: طول موج/nm)
 - y-Axis: None(این تبدیل می شود به :بازتابش)
- z-Axis: None/این تبدیل می شود به: زاویه یبر خورد)

---- :z-Value)این تبدیل می شود به: مقدار زاویه یبر خورد:۸۰)

Gial	ph	Taple	Titl	e H <u>e</u> ader		<u>S</u> trayligh	it			
x-A>	kis: 🚺	lone				<u>a</u> ll	non	ne	<u>0</u> k	
	Color	y-Axi	s	z-Axis	Т	z-Value	Use	Vie	Mod	-

scriptتطابق باید تعداد دستهدادهها را بشمارد تا بداند که کدامیک آخرین داده درردیف است. سپس چهار پارامتر به این دستهداده اختصاص می یابند.

editor - c:\GRAMS\Script\Appl0003.scr	<u>- 0 ×</u>
;title=Example 04: Assigning values to imported R measurement	-
integer n	
SetVullar n 0 REFLECTIVITY	
SetSubVal n 0 8	
4	•
Load Save <u>as</u> <u>Debug</u> <u>Hun</u> <u>Find</u> Find <u>Find</u> N	

scriptبا یادداشتها:

;title=Example 04: Assigning values to imported R measurement integer n ; the amount of datasets is saved to the variable n CountDataSets n ; the x-axis is set to wavelength / nm SetXUnit n WAVELENGTH ; the y-axis is set to wavelength / nm ; 0 stands for the first data column (see red arrow in screenshot below) ; in case of multiple column data (e.g. PSI, DELTA) additional columns appear SetYUnit n 0 REFLECTIVITY ; the z-axis is set to the angle of incidence "PHI" SetSubUnit n 0 PHI ; the value of the angle of incidence is set to 8°

SetSubVal n 0 8

بعد از اجرایscript، تمام واحدها و مقادیر به صورتنمایش داده شدهدر پنجرهی زیر، تعیین می شوند.

📑 Data	a view										2
<u>G</u> ra	ph	<u>T</u> able	<u></u> itl	е	H <u>e</u> ade	r	<u>S</u> trayligh	t			
×-A	kis: 🚺	Vaveleng	th	_			<u>a</u> ll	<u>n</u> on	e	<u>0</u> k	:
	Color	γ-Ax	is		z-Axis		z-Value	Use	Vie	Mod	<u> </u>
0		Reflectivit	у 🔽	Phi		•	8.00	1	V		ļ.

۶−۲−۶ تطابق متوالی пدستهدادهبا استفاده از مدلنوریمشابه

دستهداده، حاوی دادههای یک نمونه در پنج موقعیت مختلف است. مدلنوریباید به تمام این اندازه گیریهااعمال شود و نتایج ضخامت لایه و ضریب شکست در ۴۰۰nm و ۶۳۲٬۸nm در یک فایل ذخیره می شود.

script، در نوشتن پیغام باSPECTRARAY II ، شریک می شود. یعنی SPECTRARAY از یک logfile ابرای نوشتن پیغامها استفاده می کند که script هم می توان در همان logfile نوشت. برای غلبه بر این مشکل، هر بار که script و می خواهد پیغامی بنویسد، بایدنام logfile وض شود. بعد از آن، نام logfile ناممور داستفاده در II SPECTRARAY در II می شود. از آن، نام script به ناممور داستفاده در II SPECTRARAY از آن می شود. از آن، نام script در II در II در II در II در II در از آن می شود. بعد از آن، نام script از آن در II در

فایل نتیجه،result.txtنامیده می شود و در همانآدر سیکهSPECTRARAY IIقرار دارد، ذخیره می شود.عنوانفایل و

ستونهای نتایج،مطابق شکل زیرنمایش داده میشوند:

🚺 resul	ts.txt - Editor				
Datei B	earbeiten F <u>o</u> rma	t <u>A</u> nsicht j	2		
Point	Thickness	n(400)	(n633)	MSE	A.
0 1 2 3 4	397.65 398.74 398.43 398.88 400.20	1.4770 1.4768 1.4771 1.4775 1.4770	1.4634 1.4632 1.4635 1.4639 1.4633	0.558 0.589 0.576 0.585 0.565	
4					▼ //

این فایلscriptبا توضیحات زیر است:

;title=Example 05: Consecutive fitting of multiple measurements integer i,n double th,n400,n633,k,MSE string sth, sn400, sn633, sMSE ; Deleting the old logfile logfile {.}\results.txt eraselogfile logfile {.}pmodell.log ; Writing logfile header logfile {.}results.txt logmessage Point_Thickness_n(400)_(n633)_MSE logmessage ----logfile {.}pmodell.log ; Initial settings of the variables i = 0CountDataSets n *n* = *n*+1 . ***** ; Deselecting all datasets ; Begin of the loop1 Label1: SetDataUse i 1 0 SetDataUse i 2 0 i = i + 1if i<n Label1 ; End of the loop1 i = 0

Fit of all measurements ; Begin of the loop Label2: ; Selecting the actual dataset SetDataUse i 1 1 SetDataUse i 2 1 ; Starting the fit autofit ; Reading the film thickness of the first experiment (0) of the first layer (1) GetModelLayerThickness 0 1 th ; Reading n and k for the first experiment (0) of first layer (1) at 400 nm : Storing the results in the variables n400 and k getmodellayerrefrindex 0 1 400 n400 k getmodellayerrefrindex 0 1 633 n633 k ;Reading the MSE value MSE = GetLSQ; Converting the double variables into strings dbl2str th sth 2 dbl2str n400 sn400 4 dbl2str n633 sn633 4 dbl2str MSE sMSE 3 ; The result string is written into the logfile logfile {.}results.txt \$sth\$ logmessage \$i\$ \$sn400\$__\$sn633\$__\$sMSE\$ logfile {.}pmodell.log ; Deselecting the actual dataset SetDataUse i 1 0 SetDataUse i 2 0 ; incremenent of the actual dataset i = i + 1; Jump to label 2 if i<n Label2 : End of the loop ********** ; End of Fit of all measurements

; display of the results by starting the external notepad program shell notepad.exe {.}\results.txt

8-۲-۵- تفسیر طیفها

کالیبراسیون لامپ زنون(Xe)برای هر دو نوع طیفسنج

اجراكنندهيبيضىسنج

پیدا کردن تنظیمات اندازه گیری ایدهآل

کاربردها:

AlN/زمردبه عنوان مثالی از لایهیشفاف روی زیرآیندشفاف (ازBilkent)

نانوخوشههایAuدر پلیمر (ازBangalore)

۷- مثالهای کاربردی

۲-۱- فرایندCET

تلفيق بيضى سنجى و عبور (CET')

مثال:P2000(مخلوطپليمر /فلورين،هاىC60)

۷–۱–۱– مقدمه

لایهیP2000،جذب قوی از خود نشان میدهد و نسبتا نازک است. این باعث می شود که نتایج اندازه گیری ضخامت و توزیع nو kقابل اطمیناننباشند.

برای غلبه بر این مشکل، باید اندازه گیری بیضی سنجی را با یک روشمتفاو تتلفیق کرد. بیضی سنجی بر اساسباز تابکار می کند. نور، دوبار از لایه عبور می کند. در روش عبوری، نور فقط یکمر تبهرد می شود. بنابراین، توصیه می شود که روش عبوری با بیضی سنجی تلفیق شود. لزومی ندارد که اندازه گیری عبوری، دقیقا محدوده یطول موج بیضی سنجی را پوشش دهدومی تواند بزرگ تر یا کوچک تراز آنباشد. دو روشباید دست کم مقدار یهم پوشانی داشته باشند (اندازه گیریباز تابشدر این جا کمکی نمی کند).

^v Combined Ellipsometry and Transmission

[/]site: http://maharfanabzar.com تلفن: ۸۸۵۰۰۳۲۵ فاکس: ۸۸۵۰۰۳۲۶

فرضبر این استکه یک اندازه گیری بیضی سنجی چندزاویه ای (۵۰، ۶۰ و ۷۰ درجه) موجود است و این اندازه گیری روی زیرپایهیزبرشده انجام شده و بنابراینبازتاباز قسمت پشتزیر آیند رخ ندادهاست.

اندازه گیری عبور با یکزیر آیند پولیش شده انجام شده است که دریکفایل spc.*ذخیره شده است.

بنابراین، مدلهای مورداستفاده در هر دو اندازه گیری، یکسان هستند و فقط یک اختلاف مهم دارند: اندازه گیری عبور بایدبازتابپشتزیر آیندرا با وارد کردن هوای زیرزیر آیند کوارتز به حساب بیاورد. علاوه بر این، باید محاسبهیناهمگن، فعال شود.

این مثال، مثال ایدهآلی برای نشاندادن قدرتCETنیست،زیرا به تطابق ایدهآل برایDelta،Psiو عبور، نمیرسد. بنابرایننمیتوان مخلوطP2000را به عنوان یک تکلایهیهمگن، توصیف کرد.

به هر حال، فرایندCETرا می توانبا این مثال توضیح داد.

۲-۱-۲ مدل بیضیسنجی

مدل بیضی سنجی به شرح زیر است. این مدل شامل یک تک لایه یP2000 رویزیر آیند کوار تز است. توزیع با استفاده از مدلنوسان گربرندل توصیف می شود.

Model								
ſ	\sim	Air	NK Layer	n=1.0000				
I	46.10 nm	P2000	Brendel	n=1.8112 k=0.0095				
l	N.	Suprasil	File Layer	n=1.4434				

توصيف توزيعP2000با استفاده از مدلنوسان گربرندل

اندازه گیری و مدل کردن در Phiبرابر ۵۰و ۷۰ درجه

۷-۱-۳- آزمایش دوم برای عبور

ایجاد آزمایش دوم

آزمایش دوم به اینصورت به وجود میآید:

 $Menu \rightarrow Edit \rightarrow Model + Data \ sets \rightarrow Add$

₫.	Spect	traRay	with A	nisotroj	py - g	Vkunder	n-me:	ssun	gen\	trair	ning	
File	Edit	Data	Options	Collect	Tools	Calculate	e Plo	t E>	dra	Help		
Dir C:W	Co Ma Da	opy Para aterials ata	ameters		*	<i>⊴</i> , ¥	Т	R	l∰-	⊿	¥	-
	Cr	eate inl odel + C	terface Data sets	Cti	rl-I	Add					-	
	Fit De	: Script elete Fit	 Script			Delete						
	Co	omment	Experime	nt	4							
k	amo	orphou	is TiO2									
	As	doped	polySi	(Jellison)							
	aSi	- TL	(190-920	Inm)								
	a-S	i (Fit J	ellison)									

در بالای پنجرهیمدل، دو نشان گر(1)و(2)ظاهر می شوند. با انتخاب یک نشان گر، می توان بین دو آزمایش، جابه جا

شد.

ļ	<u>M</u> odel	02		
		Air	NK Layer	n=1.0000
	46.10 nm	P2000	Brendel	_n=1.8112 k=0.0095
	A A	Suprasil	File Layer	n=1.4434

نشان گرتبدیل شده، نشان میدهد کهآزمایش انتخاب شده است.

ساخت مدل برای آزمایش دوم مدل، عملابا بعضیفرمتهایکسان است. مدل آزمایشاولبه صورت زیر برایآزمایش دومکپی میشود: انتخاب آزمایش اول

 $Menu \rightarrow Tools \rightarrow Make \ equal \ models$

سپس آزمایش دوم انتخاب میشود.

هوا در زیر"Suprasil"کپی میشود (مثلا:"CTRL"+ حرکت دادن هوا با موشواره) و تصحیح ضخامتزیرآیند، برایsuprasilوارد میشود.

۷-۱-۴- تنظیم پارامترهای محیطی برای آزمایش دوم

سپس باید محاسبهی ناپیوسته ^۱برای آزمایش دوم، فعال شود. به طور موقت،شرایط محیطی برای تمام آزمایشها معتبر هستند. این شرایط، «عمومی»هستند.

ایناندازه گیری، به صورت زیر خاموش می شود:

Menu-Options-Deselecting "Golbal Environment"

بايد«تيک»ناپديد شود.

حال،دست کممی توانانعکاس پشتی را برای آزمایش دومفعال کرد.

¹ incoherent

[/]site: http://maharfanabzar.com تلفن: ۸۸۵۰۰۳۲۵ فاکس: ۹۲۶

🔲 Environment par	ameters				×
<u>⊻</u> alues <u>R</u> anges	<u>U</u> nit	s <u>S</u>	Gubstrate	<u>I</u> nhomog.	<u>E</u> rrors
incoherent layer					
Substrate thick	ness: [1.000	mm	-	
Beam dian	neter:	4.000	mm	-	
Detector ape	rture:	4.000	mm	1	
No. of backside	refl.:	1			
thick layer dete	ected: S	Supra	sil		
Overla	yers:	0	Fraction	: 1.000	
Filling mate	erial:	0 v. Ai	r		

اندازه گیری عبور، از طریق:Menue→File→Load، برای آزمایش دوم در دستهداده بار گذاریمی شود (فرمت.spc*انتخاب می شود).

دو آزمایش، به صورت زیر ظاهر میشوند:

Air NK Layer n=1.0000 4610 mm 2000 Brendel n=1.8112 k=0.0095 1000000 rm Suprasil (incoherent) File Layer n=1.4234 Air NK Layer n=1.0005 Suprasil File Layer n=1.434	Model	38			M	odel	00			
	46.10 nm 1000000.00 n	Air P2000 Suprasil (incoherent) Air	NK Layer Brendel File Layer NK Layer	n=1.0000 n=1.8112 k=0.0095 n=1.4434 n=1.0000		46.10 mm	Air P2000 Suprasil	NK Layer Brendel File Layer	n=1.0000 n=1.8112 k=0.0095 n=1.4434	9
Dgta	Data				D	ata				

تمام موادی کهدارای نام مشابه هستند، باید بدون استثناپارامترهای یکسانی نیز داشته باشند.برای مثال، ضخامت لایه در دو آزمایش مستقل است ولی باید اندازهیآن برای هر دو یکسان باشد. در غیر اینصورت، این تلفیقمشکل قابلاطمینان نبودن دادهها را حل نمی کند.

fit sctipt" ايجاد

ضخامت دو آزمایش با استفاده از تطابقsctiptبه هم مربوط می شوند.

sctiptتطابق، ضخامت لایهیP2000را از آزمایش اولخوانده و آن را در آزمایش دومکپی میکند.

sctiptتطابق نیاز به دانستن نام صحیح پارامتر ضخامت لایهیP2000در هر دو آزمایش دارد. میتوان این دو پارامتررا در لیست آزمایشها پیدا کرد (در شکلهای زیر توسط کادرهای آبی مشخص شدهاند).

۷	'iew of all model parameters							- 🗆 ×
	Name	Fit	Value	Typ. Diff.	Accuracy	Dig.	View	Toc
	Air: Refr. index		1.000	0.100	0.0010	3	¥	
	Air: Abcorption		0.000	0.100	0.0010	3	V	
I	[1,1] P2000 : Thickness [nm]	r	46.10	20.00	0.100	2	V	
ŀ	P2000 : e1(int)		2.08500	0.10000	0.000100	5	V	
	P2000 : nu-0(0)	V	39300.113	1000.000	0.0100	3	V	
	D0000	1	2105 0412	1000 2000	0.00100	4	1	

1 2000 . 110-1(0)	1	£1.2002	1000.2000	0.00100	-	-	-	
P2000 : nu-p(5)	Ľ	7738.64	1000.00	0.100	2	Ľ		
P2000 · Sigma(5)	V	4346.075	1000.000	0.0100	3	V		1
[2,1] P2000 : Thickness [nm]	r	46.10	20.00	0.100	2	×		1
2,2 Suprasil: Thickness [nm]		1000000.00	20.00	0.010	2	V		1
(0TSE85000000000000000000000000000000000000		1 0000	0.0100	0.00100	1	V		-
•							•	

برایsctiptتطابق، نیازی به استفاده از نام کامل نیست.به تعداد بسیار زیادی کاراکتر نیاز است تا توسطsctiptتطابق، نیازی شود.بنابراین،"[1,1]"و"[2,1]"برای استفاده درsctiptتطابق، کافی است.

sctipt تطابق به این صورت ایجاد می شود:. . . Menu→Edit→Fit sctipt.

	Spect	traRay	with A	nisotroj	oy - g	\kun		
:	Edit	Data	Options	Collect	Tools	Calc		
) :\x / :	Co Ma Da	opy Para aterials ata	ameters		*	4		
d d	Create interface Ctrl-I Model + Data sets ▶							
	Fit	: Script						
	De	elete Fit	Script					
J Q	Co	omment	Experime	nt				
	8		T:00					

در حال حاضر، هیچsctiptتطابقی وجود ندارد. بنابراین، پیغام زیر ظاهر می شود:

بعد از تایید پیغام، یکsctiptتطابق ابتدایی به وجود میآید. اینsctipt، موقتا تاثیری ندارد. بایدsctiptتطابق را با استفاده از دستورهای لازم،در جای مناسب تکمیل کرد.

باید با استفاده از دستور زیر، متغیری برای ضخامت در قسمت":Start''اعلام شود:

double th

ضخامت، از آزمایش اول خوانده شده و در آزمایش دوم در ":BeforeCalcModel"کپی می شود:

Th = getparameter [1, 1]Setparameter [2, 1] th

sctiptتطابق به صورت زیر ظاهر میشود:

fitting script	- 🗆 ×
; Initialization before running the fit Start: set FitScriptModulo 1 double th exit	-
; Called each iteration during the fit (if FitScriptModulo=1) Modulo: exit	
; Called before each calculation of theoretical data ; Add your changes to parameters here: BeforeCalcModel: th = getparameter [1,1] setparameter [2,1] th exit	
; if successful finished OnFinish: exit	
; if aborted by the user OnCancel:	-
Load Save <u>as</u> <u>Save</u> Quit	•

می توان sctipt تطابق را با استفاده از "Quit" بست. نیازی به ذخیرهی جداگانهی آن نیست. این script، بعدا به همراه فایل واقعی آزمایش ذخیره می شود.

CET-۷- ۲-۹- تطابق مدل

محدوده یمقادیر اندازه گیریPsiوPeltaبه ترتیب ۹۰ . . . ۰ و ۳۶۰ . . . ۰ درجه است،در حالی که محدوده یعبور فقط ۱ . . . ۰ است.اینموضوعباعث می شود که تخمین اندازه گیریPsiوDeltaبسیار بیشاز حد باشد و اندازه گیری عبور، اثری نخواهد داشت.

دو راه برای غلبه بر این مشکل وجود دارد:

۱) اندازه گیریPsiوDeltaمی تواندبه ثوابت فوریه (s1, s2) تبدیلشود. محدوده یاین ثوابت ۱+ . . . ۱- است و بنابراین، خیلیمشابهبه محدوده یعبور است.

۲) اگر نمیخواهید از این تبدیل استفاده کنید، باید وزن اندازه گیریPsiوDeltaرا برای مقدارMSEفرایند تطابق، به شدت کاهش دهید.

این کار، دربخش"Title"اندازه گیریPsiوDeltaانجام می شود. در این مثال،مقدار وزناز ۱ به ۰٬۰۰۵ کاهش می یابد.

<u>G</u> raph	Table	Title	Header	<u>S</u> traylight	
Name:	Sample e	 c090901-02	P2000 / s	uprasil	
User:		Date:		Time:	
Measu <u>W</u> av	rement Er velength:	vironment 1.0E30 cm	-1 Proce	ss time: 0.00 min	
<u>A</u> ngle Polari	of incid.: zer pos.:	0.00 *	<u>T</u> emp W <u>e</u> ig	berature: 273.2 K ht (01): 0.0050	
		Sam	ple rotation	(Theta): 0.00 °	
No. of p	oints: 7	81 ×	axis by po	ints: yes	

وقتی که صفحه یتطابق باز می شود، Delta مانند معمول، نمایش داده می شوند. اندازه گیری عبور در پنجرهی Delta نمایش داده می شود. به سختی می توان آن را دید، چون فقطبه صور تیک خط مستقیمدر صفر است و نمی توان کیفیت تطابق را تخمین زد.

برای این کهعبور قابل مشاهده شود، باید اندازه گیریDeltaاز این پنجره حذف شود. این کار در بخش "Header" بخش "Header" بخش "Header انجام می شود.

1	Calar					an	nor	ie	0	
1	COIOL	γ-Axis		2	-Axis	z-Value	Use	Vie	Mod	×
<u>- 1</u>		Psi	-	Phi	-	50.00	r	¥.		-
2		Delta	-	Phi	-	50.00	V			
3		Psi	-	Phi	-	60.00	×	N		
4		Delta	-	Phi	-	60.00	Ľ		1	
5		Psi	-	Phi	-	70.00	M	V		1
6		Delta	-	Phi	-	70.00	¥.			
										¥ = ×

/site: http://maharfanabzar.com تلفن: ٨٨٥٠٠٣٢٦ فاكس: ٨٨٥٠٠٣٢٩

علامتهایچک برایDeltaدر ستون"View''برداشته میشود.اکنوندیگر اندازه گیریDeltaنشان داده نمیشود ولی هنوز در فرایند تطابق، استفاده میشود.

حالا می توان فرایند تطابق را شروع کرد. حالا اندازه گیری عبور به حساب می آید و روی نتایج اثر می گذارد.

۲-۷- تطابق فاصله یانتقال یافته + تعیین پارامترها توسط مدلنوسان گرتاک-لورنس

در اینجا باید یک لایهیفوتورزیست اندازه گیری شود. در محدودهیطیف مریی(VIS)،این لایهشفاف است. در این-جا میتوان این لایه را با استفاده از فرمول توزیع کوشی،توصیف کرد. ضخامت لایه و توزیع nبه دست میآید. این نمونه،یکساختار پیچیدهی میراییدر محدودهیUVاز خود نشان میدهد. در اینجا، لایهیتاک لورنس، فرمول بهینهی توزیع است. گاهیاوقات، وقتی که طیف اولیهیΔ،γتطابق داده شده است، پیدا کردن مقادیر شروع

Shifted Interval Fit + Parameterization with Tauc-Lorentz oscillator model

مناسب برای توصیف میرایی با استفاده از لایهیتاک لورنس مشکل است که به دلیل لبههای تداخل و ساختارهای ناشی از ساختارهای توزیعk، مخلوط شدهاند.

وقتی که بتوان این پارامترها را در توزیعnولمخود لایه تطابق داد، پیدا کردن این پارامترهای اولیه آسان تر است. "shifted interval fit"امکان توزیع مستقیمnولالیه، بدون اعمال فرمول توزیع پیچیده را فراهم میکند. در عوض، محدودهیطیف به بخشهای کوچکی تقسیم میشود. ضریب شکستnو ضریب میراییkبه صورت جداگانه برای هر قسمت مطابقت مییابند. در انتها، توزیع کل محدودهیطیف به دست میآید.

مثال زیر، آنالیز توزیعnولادر تمام محدودهیطیف، با استفاده از فرایند"Shifted Interval fit"را نشان میدهد. این کار با تطابق دادن توزیعنوسانگرتاک_لورنس به توزیع به دست آمده از تطابق قسمتی، دنبال میشود.

مرحلهی(۱) تعیین ضخامت لایه

دانستن ضخامتدقیقلایهیفوتورزیست ضروری است زیرا ضخامت لایه، یک پارامتر تطابق در نتر در محدودهیطیف جذبی، تطبیق حساسیت زیادی به ضخامت لایه ندارد.

ضخامت لایهیفتورزیست،ابتدا در قسمت شفاف فتورزیست (محدودهیطیف۹۲۰nm . . . ۴۵۰) آنالیز میشود. اندازه گیری چندزاویهای، ضروری است. در اینجا، اندازه گیریψو∆در ۵۰، ۶۰ و ۷۰ درجه انجام میشود.

ازیک مدل کوشی ساده برای مدل کردن اندازه گیریدر شکل زیراستفاده شده است.

	<u>M</u> odel			
		Air	NK Layer	n=1.0000
l	112.84 nm	Resist	Cauchy Layer	n=1.5878
l	N.	Si DUV-UV-VIS-NIR	File Layer	n=3.8736 k=0.0146

محدوده یطیف را در ۹۲۰nm . . . ۴۵۰ تنظیم کنید.

ضخامت لایه و ضرایب کوشیN1،N0وN2، پارامترهای تطابق لایه یفتورزیست هستند.

مدل كوشي براي لايەيفوتورزيست

اندازه گیری و مدل کردن بعد از تطابق

این مدل، تطابق ایدهآل را برای اندازه گیری نشان میدهد.

ضخامت لایهبرابر ۱۱۲_/۸nm به دست میآید.

«Shifted interval fit» مرحلهی(۲) تنظیم مدل برای

باید ضخامت لایه را در نظر داشت.

لایهیکوشی برداشته میشود. به جای آن، یک"Fixed refractive index and absorption"که"N,K layer"نیز نامیده میشود، قرار داده میشود.

نشان گر 'New' را از نوار نشان گرها فشار دهید. پنجرهی 'Create new material' باز می شود.

نوع"Fixed refractive index and absorption"را انتخاب كنيد و"Ok"را فشار دهيد.

Create new material	×
Afromovitz III-V Semiconductor	7
Afromowitz AlxGa(1-x)As	
Afromowitz In(1-x)GaxAsyP(1-y) matched on InP	
Afromowitz In(1-x)GaxAsyP(1-y)	ш
Afromowitz In(1-x)GaxP	ш
Afromowitz InxGa(1-x)As	
Biaxial Anisotropic Layer	ш
Brendel Oscillator	ш
Cauchy layer	
Drude-Lorentz model (oscillators)	ш
Effective medium and refractive index gradient layer	
Epitaxial Silicon Profile	
File layer (data table)	
Fixed refractive index and absorption	
Formula for dielectric function	
Forouhi-Bloomer	ш
Hamberg layer	
Homogeneous growing layer	ш
Leng oscillator	
Nuclei growth	
Periodical group	
Polynomial dispersion	
Schott glass	1
Sellmeier (transparent)	
Sernelius layer	
Table (2D)	<u></u>
Help Cancel Ok	

روی"Fixed refractive index and absorption"دومرتبهکلیک کنید. پنجرهی"N,K layer"باز می شود.

ضخامت لایهی بهدست آمدهاز مدل سازی قبلی را وارد کنید (در این جا:۱۲۸٬۸۴nm).

nولارا به عنوان پارامترهای تطابق انتخاب کنید.

مقدار اولیهبرایnبرابر ۱٬۶ انتخاب کنید.

N,K - layer	×
Na <u>m</u> e: Resist	
?Refractive index <u>n</u> :	1.6
?Absorption <u>k</u> :	0.000
Thickness <u>d</u> :	112.84
Eit >> Help	ancel Qk

"Ok" فشار دهید.اکنوناین لایه در مدل وارد می شود. آن را به محل صحیحانتقال دهید. حالمدل به صورت زیر ظاهر می شود:

1	<u>M</u> odel				
		Air	NK Layer	n=1.0000	
	112.84 nm	Resist	NK Layer	n=1.6000	
	A	SI DUV-UV-VIS-NIR	File Layer	n=3.8736 k=0.0146	

«Shifted interval fit"(۳)مرحلهی

محدوده یطول موجرادر ۹۲۰nm . . . ۲۴۰ تنظیمکنید.

حالا پنجرهیتطبیق باز میشود.

اندازه گیری و مدل کردن با مدل جدید با تطابق''N,L layer''. مدل در محدوده یطیف مریی به خوبی تطابق دارد. محدوده یUVانحراف نشان میدهد زیرا جذب فوتورزیست در مدل تعریف نشده است.

دکمهی". . . Interval Fit"را فشار دهید. پنجرهیتطابق قسمت منتقل شده، باز می شود. تنظیم های زیر را انتخاب کنید:

nm:طول موج (nm)

از:۹۲۰nm (روبش از بالاترین طول موج شروع می شود زیرا مقادیر اولیه ی مدل، در این جا صحیح هستند. این مقادیر ازمدل سازی قبلی شناخته شده هستند. اما در UV، این ها موقتا ناشناخته هستند، بنابراین، شروع از ۲۴۰nm از ۲۴۰nm ممکن است نتایج اشتباهی بدهد).

تا:۲۴۰ nm

گام:۵٬۰nm (اندازهیگامبرای فواصل. اینپارامترباید به اندازهیکافی کوچک باشد تا ساختاری در طیف، نادیده نماند).

پهنا:۵nm (پهنایفواصل تطابقیافته. اینپارامترباید به اندازهیکافی باریک باشد تا از ساختارهای طیف، متوسط-گیری نشود).

Max. Iteration (تطابق هر فاصله بايددست كمبعد از ۱۰۰ مرحله انجام شود).

Stop fit if MSE is less than براى محدود كردن مقدار دفعاتتطابق، استفاده نمى شود).

Press clear results:(در حالتی که نتایج قدیمی در بخش نتایج نشان داده شوند).

Shifted Interval Fit				×
<u>x</u> -axis: Wavelength (nm) 💌	240.0) nm 9	20.0 nm
from 920 to	240	<u>s</u> tep	5.0	width 5
	□ restore st	art val	ues each	step
Max. Iterat.: 100	Stop fit if	LS <u>Q</u> is	less than	n: 0.00000
☐ <u>G</u> et Dispersion of	Resist		→ at 6	33.0
Start Stop Cle	ar Results	Sa <u>v</u> e R	esults	<u>D</u> isplay <u>O</u> k
				*
4				Þ

پنجرهی"Shifted interval fit

دکمهی"Start"را فشار دهید تا فرایند تطابق شروع شود.اکنون،تطابقبه صورتمرحله به مرحله انجام می شود. پیشرفت کار در پنجرهی"Shifted interval fit"نشان داده می شود. در این جا، فواصل واقعی نمایش داده می-شوند. پنجره یتطابق، پیشرفت هر مرحله را نشان می دهد. نتایج، در پنجره ینتایج نشان داده می شوند.

		Interval fit
300 -		Run <u>F</u> it
		Parameters
70.0		Environment
50.0	Shifted Interval Fit	Modulo: 2
	<u>x</u> -axis: Wavelength (nm) = 903 908	Update: 1
0.0	from 920 to 240 step 5.0 width 5	× idraw theory
10.0	F jestore start values each step	i show agis tit
	Max. Iterat.: 100 Stop fit if LSQ is less than: 0.00000	File:
	Get Dispersion of Regist + at 633.0 800.0 900.0	C. \grams\Data\
		X save data to
	Stor Stor Liear Hesuits Save Hesuits Display Dk	Format:
	Ficis funning	Psi+Delta
900.0	; Shifted fit data columns; Angle of Incidence	Plot
200.0	; Resist: Refr. index ; Resist: Absorption : MSE	🗂 IDelta -180
	920.00 1.569 0.000 MSE:0.00837500	Recalculate
00.0		
00.0.		
0.0	Isotropic multilever on isotropic substrat	e (
_	<u> </u>	Quit

وقتی که فرایند تطابق فاصلهیانتقالیافته تمام شد، میتوان با فشار دادن دکمهی"Display"ئتایج را نمایش داد. توزیعnوkبه همراه مقدارMSEنشان داده میشوند.

"Shifted Interval Fit" نتايج

حالا نتایج فرایند تطابق به صورت فایل"dat"ذخیره می شوند.نشان گر"Save results"را فشار دهید و یک نام مناسب برای فایل انتخاب کنید.

Save fit resu	lts		[? 🗙
Look jn: 🚞	Resist_Si_Shifted_Interval_Fit 🛛 🕑 🔇	1	•111 👏	
		_		
File <u>n</u> ame:	nk_resist_shift_int_jfit		<u>O</u> pen	
Files of type:	ASCII files (*.dat)	-	Cancel	
Selected:				

اكنونمى توان پنجرهى "shifted interval fit" و "fitting" را بست. مى توان آزمايش را ذخيره كرد.

مرحلهی(۴) اعمال لایهیتاک لورنس به توزیع تطبیق یافته

یک آزمایش جدید ایجاد میشود. مقیاس طول موج به انرژی فوتون(eV)تنظیم میشود.

🔲 Enviro	nment paran	neters			×
Values	<u>R</u> anges	<u>U</u> nits	<u>S</u> ubstrate	Inhomog.	Errors
	·				
These u	units are use	ed to disp	lay values:		
Wa	velenath:	V -	Thickness:	nm 🔻	
	reiengan 🔤				-

دادههای توزیع را وارد کنید.

باید دادههای توزیع را به قسمت "Data"نرمافزار SPECTRARAYوارد کرد.

از فهرست انتخاب كنيد:File→Load File

نوع فايل را انتخاب كنيد:(dat.*)

فايل نتايج را انتخاب كنيد.

نتايجبه قسمتDataوارد می شود.

Load			2 🛛
Look jn: 🚞	Resist_SiShifted_Interval_Fit	· 0 🕫	🕑 🛄•
nk_resist_	shift_int_fit.dat		
-			
and the second sec	A TALENT AND A CONTRACT		
File name:	nk_resist_shift_int_fit.dat		<u>Open</u>
File <u>n</u> ame: Files of <u>type</u> :	nk_resist_shift_int_fit.dat Plot (*.dat)	~	<u>Open</u> Cancel
File <u>n</u> ame: Files of <u>type</u> : Selected: nk	nk_resist_shift_int_fit.dat Plot (".dat) resist_shift_int_fit.dat	~	<u>Open</u> Cancel

وقتی که فایل وارد شد، واحد هر پارامتر ناشناخته است. باید آن را به صورت دستی وارد کرد.

فایل نتایج را باز کنید و وارد بخش"Header"شوید.

	1 Da	ta view	,									×
ſ	<u>G</u> ra	ph	Table	T <u>i</u> tl	e	H <u>e</u> ade	r					
	x-A)	kis: N	lone		•			all	<u>n</u> on	ie	<u>0</u>	
		Color	γ-Axis		Z-	Axis		z-Value	Use	Vie	Mod	-
	1		None	•	None		•		V	V		
	2		None	•	None		•		V	V		HI
	3		None	•	None		•		V	V		

واحدهای پارامترها را تعیین کنید. سومین ردیف، مقدارMSEاست. میتوانید از آن صرفنظر کنید. همانطور که در شکل زیر نشان داده شده است، ردیف سوم را خاموش کنید.

	l Da	ta view	,										×
$\left[\right]$	<u>G</u> ra	ph	Table	T <u>i</u> tl	e	H <u>e</u> ade	r						
	x-A)	kis: V	∀avelength		•			<u>a</u> ll	<u>n</u> o	ne	<u>0</u>	{	
		Color	γ-Axis		7	z-Axis		z-Value	Use	Vie	Mod	≖	
	1		Matrefractiv	•	None		٠		V	V			
	2		Matabsorpt	•	None		•		V	1		H	
	3		None	•	None		۲			1			

توصیه می شود محور xرا از مقیاس "wavelength" به "eV" (انرژی فوتون) تغییر دهید تا قسمت بعدی مدل سازی را تسهیل کنید. این کار به سادگی با انتخاب "eV" به جای "wavelength" انجام می شود. اکنون، تبدیل به صورت خود کار انجام می شود.

2	1 Da	ta viev	v									>
	<u>G</u> ra	ph	Table	T <u>i</u> t	le	H <u>e</u> ade	r					
	x-Ax	kis:	Ev		.			<u>a</u> ll	<u>n</u> on	e	<u>0</u>	•
		Color	γ-Axis		Z	z-Axis		z-Value	Use	Vie	Mod	
	1		Matrefractiv	/ -	None		•		V	¥		lei -
	2		Matabsorpt	•	None		٠		V	v		H.
	3		None	•	None		•			v		

مرحلهی(۵) مدلسازی

مدلی با محیط هوا"Air"و لایهیجدیدTauc-Lorentیجاد می شود.ناملایهیتاک لورنس به "Resist – TL"تغییر داده می شود.

مرحله یبعد، پیدا کردن مقادیر شروع براینوسان گرتاک لورنس است.

نتیجهی"shifted interval fit"بررسی میشود. جذب (گاف انرژیEg) در ۳٬۰eV قرار دارد. ساختار به صورت یکتکنوسان گرظاهر نمی شود. در عوض، به نظر می آید که یکنوسان گردر حدود ۳٬۰ تا۴٬۰eV قرار دارد.نوسان گردوم، خارج از محدوده یطیف در انرژی های بالاتر از ۵٬۰eV قرار دارد.

دونوسان گرزیر با استفاده از مدلنوسان گرتاک_لورنس ساخته شدهاند.

تلفیق دونوسان گربسیار شبیه به نتایج"shifted interval fit"ست:

مرحلهی(۶) تطابق لایهیتاک_لورنس (نوسانگر۲+۱) بر نتایج"shifted interval fit"

وقتی که پارامترهای شروع پیدا شدند"typical differences"در مقادیر معقول تنظیم می شود تا از پیشرفت خوب تطابق، اطمینان حاصل شود.

"<<>Fit"؛ را در"Resist – TL"؛ پنجرهینوسان گرتاک_لورنس فشار دهید. تفاوتها را مطابق شکل زیر انتخاب کنید:

Fit d	lata -	Res	ist - TL													- 🗆 ×
		1 mail	L M L M	T		lo:	200	Tel	14	Martin	Description	D Mark	Data O	Data	D 10 0	0.1.0
Na	ame	FIL	Value	Typ. Diff.	Accuracy	Dig.	VIEW	1001	Minimum	Maximum	Reset Min.	Reset Max.	Data U	Data 1	Data 2	Dat -
e1	(inf)	1	1.00000	0.10000	0.000100	5	×		-1000.00000	1000.00000	1.00000	1.00000	0.000	0.000	0.000	_
E	g(0)		3.0000	0.2000	0.00100	4	2		0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	
A	4(0)	*	30.00	5.00	0.100	2	2		-1000.00	100000.00	0.00	200.00	0.000	0.000	0.000	
B	0(0)	Ľ	8.0000	0.5000	0.00100	4	Ľ		0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	
0	(0)	1	4.0000	0.2000	0.00100	4	2		0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	
E	g(1)	Ľ	3.0000	0.2000	0.00100	4	Ľ		0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	
P	4(1)	×.	20.00	5.00	0.100	2	×		-1000.00	100000.00	0.00	200.00	0.000	0.000	0.000	
B	0(1)	V	3.5000	0.5000	0.00100	4	×		0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	
0	(1)	Ľ	1.0000	0.2000	0.00100	4	Ľ		0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	

می توانید پنجره را ببندید و پنجره یتطابقباز شدهو فرایند تطابق شروع می شود. بعد از تطابق، هنوز انحرافاتی مشاهده می شود که با پیکان های قرمز نشان داده شده است.

انحراف حدود۳٬۰eV ناشی از "shifted interval fit procedure»محتمل است. ازاین انحرافصرفنظر می شود. به نظر می آید ساختار در ۴٬۰eV،حاوینوسان گراضافی است.

مرحلهی(۷)معرفینوسان گرسوم به لایه یتاک لورنس در حدود ۴٬۰eV

مرحلهی(۸)تطابق دادن لایه یتاک لورنس (نوسان گر ۲+۲+۳) بر نتایج "shifted interval fit"

وقتی که پارامترهای شروع پیدا شدند،"typical differences"براینوسان گر ۳، در مقادیر معقول تنظیم می شود تا از پیشرفت تطابق خوب، اطمینان حاصل شود.

":<</kesist – TL"، را در "Fit:پنجره یتاک لورنس فشار دهید. تفاوت هارا مطابق شکل زیر انتخاب کنید:

	Ttess	nat - TE						22 ZH							
lame	Fit	Value	Typ. Diff.	Accuracy	Dig.	View	Tool	Minimum	Maximum	Reset Min.	Reset Max.	Data 0	Data 1	Data 2	Dat
1(inf)	1	1.00000	0.10000	0.000100	5	2	lar (-1000.00000	1000.00000	1.00000	1.00000	0.000	0.000	0.000	1
(D)	V	2.8722	0.2000	0.00100	4	V		0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	
4(0)	*	31.17	5.00	0.100	2	Ľ	1	-1000.00	100000.00	0.00	200.00	0.000	0.000	0.000	
(0)	V	11.1467	0.5000	0.00100	4	¥.		0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	
(0)	V	3.8494	0.5000	0.00100	4	¥.	1	0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	
g(1)	¥	2.6586	0.2000	0.00100	4	Ľ	1	0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	
(1)	V	6.12	5.00	0.100	2	V	11	-1000.00	100000.00	0.00	200.00	0.000	0.000	0.000	
0(1)	¥.	3.7678	0.5000	0.00100	4	¥		0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	
(1)	Ľ	1.2423	0.2000	0.00100	4	¥.	11	0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	
g(2)	V	4.0000	0.2000	0.00100	4	V		0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	
A(2)	K	5.00	1.00	0.100	2	K	<u></u>	-1000.00	100000.00	0.00	200.00	0.000	0.000	0.000	
0(2)	Ľ	4.2000	0.5000	0.00100	4	V		0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	
C(2)	V	0.5000	0.2000	0.00100	4	V	5	0.0000	1000.0000	0.1000	8.0000	0.000	0.000	0.000	

مى توان پنجره را بست و پنجره يتطبيق بازشدهو فرايند تطابق شروع مى شود.

اکنونساختار در ۴٬۲eV به خوبی با مدل توصیف میشود.

حال، لایه یتاک لورنس به عنوان یک ماده یجدید در کتابخانه یمواد ذخیره می شود. لایه یتاک لورنس را در بخش مدل انتخاب کنیدتا رنگ آن وارونه شودو دکمهی "Save" را فشار دهید.

	<u>M</u> odel			
F7 - Load		Air	NK Layer	n=1.0000
<u>S</u> ave		Resist - TL	Tauc-Lorentz	n=1.5853
Replace				
Remove				

		Contraction in the Contraction of Co			
af45_se.m	at	🖻 al10gasa.mat	💌 al_oz.mat	ALN_C.MAT	8
🖻 ag_osc.mat		🖻 al20gasa.mat	💌 al_pa.mat	🔳 alon_pa.mat	
🔎 ag_pa.mat		🖻 al31gasa.mat	🗈 alas_pa.mat	ALQ3_C.MAT	
🔊 age_a.mat		🖻 al42gasa.mat	📄 alcr_bg.mat	ALQ3_DL.MAT	
🔊 aginsbte.mat		🕒 al49gasa.mat	🕒 alcu_s.mat	🕒 alsb_pa.mat	9
🔊 air.mat		🔊 al59gasa.mat	💌 algaas2.mat	🔎 alsi_s.mat	
aist.mat		🖻 al70gasa.mat	ALGAN18C.MAT	🔎 alsiti_s.mat	3
🔊 al2o3_pa.mat		💌 al80gasa.mat	ALGAN34C.MAT	🔎 alti_bg.mat	3
AL203_TL.MAT		🔎 al_a.mat	🖹 ALGAN38C.MAT	🖻 alti_osc.mat	3
c] (101-1)	ľ				>
ile <u>n</u> ame:	Resis	st.mat		Save	
Save as type: Material files				Cance	

لایه، با استفاده از نام فایل"Resist.mat"در قسمتc:\grams\mat\sect}: دخیره می شود. وقتی که ذخیره شد، کتابخانه یمواد به روزرسانی می شود و ماده ی جدید در دسترس خواهد بود.

اگر بهروزرسانی به صورت خودکار انجام نشود، باید به صورت دستی شروع شود. به این منظور،نشان گر "Dir" را از ستون نشانگرها انتخابکردهو "Ok" را فشار دهید.

مرحلهی(۹) تطابق لایهیتاک_لورنس (نوسانگر ۲+۲+۳) بر نتایج اندازهگیریψوΔ

آزمایش اولیه بارگذاریمی شود که شامل مدل کوشی و اندازه گیری های اولیه یψو∆است. لایه یکوشی با لایه یتاک_لورنس از کتابخانه یمواد جای گزین می شود.

Model						
Γ	\checkmark	Air	NK Layer	n=1.0000		
	112.80 nm	Resist - TL	Tauc-Lorentz	n=1.5853		
	Ň	Si DUV-UV-VIS-NIR	File Layer	n=3.8736 k=0.0146		

محدودهیطیف در ۹۲۰۰m . . . ۲۴۰ تنظیم می شود. سپس مقیاس طول موج،از طول موج به انرژی فوتون(eV)تنظیم می شود.

پنجره يتطابق بازشدهو فرايند تطابق شروع مى شود.

نهایتا مقدار MSEاز ۱٫۲۸ به ۰٫۵۸ بهبود یافت. مدل به خوبی بر اندازه گیریها منطبق شد.

توزیع نهایی لایهیفوتورزیست در شکل زیر نشان داده شده است:

