پمپ ارشمیدسی

  • پمپ های پیچوار ارشمیدسی ساخت شرکتBabcock Spaans بر اساس قانون ارشمیدس بنا شده که به دلیل مکانیزم ساده آن از دیر باز تاکنون برای انتقال آب به کار برده می شود.
  • قسمت پایین پمپ در سیال غوطه ور بوده و باچرخش پمپ، سیال به آرامی به سمت بالا حرکت کرده و در قسمت بالا تخیله می گردد.
  • پمپ های ارشمیدسی عموما در ابتدای تصفیه خانه های فاضلاب برای تامین اختلاف ارتفاع مورد نیاز استفاده میشود.
  • این نوع پمپ ها برای انتقال حجم زیاد سیال به کار گرفته می شود. این پمپ در نوع نصب برروی بتن و نصب برروی بدنه ی فلزی تولید می شود.

مقایسه پمپ های سانتریفیوژ مستغرق با پمپ ارشمیدسی برای فاضلاب ورودی تصفیه خانه:

  • پمپ های پیچوار ارشمیدسی توانایی حمل ذرات بزرگ همراه فاضلاب مثل شیشه ˓ سنگ ˓ چوب ˓ قوطی کنسرو و… به راحتی و بدون افت بازدهی دارند که در نتیجه نیازی به اسکرین نبوده و سبب کاهش هزینه های خرید و نگه داری اسکرین می شود. در صورتی که پمپ های سانتریفیوژ مستغرق نیازمند به اسکرین دانه ریز جهت جلوگیری از ورود ذرات به پمپ می باشد.
  • به دلیل ساختمان ساده پمپ های پیچوار ارشمیدسی هرینه های تعمیر و نگه داری بسیار کمتری نسبت به پمپ های سانتریفیوژ مستغرق دارند. (از قبیل تعویض مدام مکانیکال سیل و…)
  • پمپ های سانتریفیوژ مستغرق به دلیل سرعت بالا (450 – 950 دور در دقیقه) سبب افزایش فرسودگی و آسیب به پمپ می شود مخصوصا وقتی فاضلاب دارای ماسه و سنگ باشد که منجر به عمر طولانی اسکرو پمپ ها از 20-40 سال بسته به نوع سیال می گردد.
  • به دلیل مستغرق بودن پمپ های سانتریفیوژ در فاضلاب و در دسترس نبودن آن ˓ در صورت بروز مشکل در پمپ زمانی که پمپ دچار مشکل اساسی شد اپراتور متوجه آن خواهد شد.
  • پمپ های پیچوار ارشمیدسی بازدهی بالایی دارند (75 درصد) که سبب کاهش هزینه برق مصرفی می شود در حالی است که پمپ های سانتریفیوژی که بتوانند ذرات بیش از 100 میلی متر را از خود عبور دهند به جهت نوع طراحی پروانه پمپ جهت جلوگیری از انسداد باعث کاهش بازدهی پمپ تا 45 درصد می شود.
  • این میزان بازدهی بالای پمپ های پیچوار ارشمیدسی ثابت بوده و در کارکرد 40-100 درصد ظرفیت کاهش نمی یابد که سبب کاهش قابل ملاحظه در مصرف برق می شود.(بدون نیاز به تجهیزات کنترلی) (با توجه به تغییرات دبی فاضلاب ورودی تصفیه خانه در ساعات مختلف شبانه روز) در حالی که عملکرد پمپ های سانتریفیوژ مستغرق در پایین تر از ظرفیت خود سبب کاهش بازدهی آن می شود.
  • همانطور که در شکل زیر مشخص است میزان بازدهی این پمپ ها ثابت بوده و با تغییر سطح آب ورودی به پمپ اسکرو به 40 درصد ارتفاع اولیه میزان بازدهی تغییر چندانی نکرده و 66 درصد است در حالی که در پمپ سانتریفیوژ میزان بازدهی از 50 به 25 درصد کاهش یافته است.
  • امکان کارکردن حتی در دبی صفر بدون بروز مشکل را دارد. این در حالی است که در پمپ های سانتریفیوژ مستغرق امکان بروز پدیده کاویتاسیون وجود دارد و همپنین برای جلوگیری از خشک کار کردن، پمپ های سانتریفیوژ نیازمند تجهیزات کنترلی است.
  • در پمپ های سانتریفیوژ مستغرق به دلیل انتقال ذرات جامد همراه فاضلاب نیازمند سرعت بالای سیال در خروجی پمپ در لوله عمودی می باشد که این مهم ˓ نیازمند قطر لوله کوچکتر و در نتیجه سبب افزایش افت فشار در لوله و افزایش مصرف انرژی می شود.

اما خود ارشمیدس

ارشمیدس دانشمند و ریاضیدان یونانی در سال 212 قبل از میلاد در شهر سیراکوز یونان چشم به جهان گشود و در جوانی برای آموختن دانش به اسکندریه رفت. بیشتر دوران زندگیش را در زادگاهش گذرانید و با فرمانروای این شهر دوستی نزدیک داشت. در اینجا سخن از معروفترین استحمامی است که یک انسان در تاریخ بشریت انجام داده است. در داستانها چنین آمده است که بیش از 2000 سال پیش در شهر سیراکوز پایتخت ایالت یونانی سیسیل آن زمان ارشمیدس مکانیک دان و ریاضیدان و مشاور دربار پادشاه یمرون یکی از معروفترین کشفهای خود را در خزینه حمام انجام داد.

کشفی در حمام

روزی که او در حمامی عمومی به داخل خزینه پا نهاد و در آن نشست و حین این کار بالا آمدن آب خزینه را مشاهده کرده ، ناگهان فکری به مغزش خطور کرد. او بلافاصله لنگی را به دور خود پیچید و با این شکل و شمایل به سمت خانه روان شد و مرتب فریاد می‌زد یافتم، یافتم. او چه چیزی را یافته بود؟ پادشاه به او مأموریت داده بود راز جواهر ساز خیانتکار دربار را کشف و او را رسوا کند. شاه هیرون بر کار جواهر ساز شک کرده بود و چنین می‌پنداشت که او بخشی از طلایی را که برای ساختن تاج شاهی به وی داده بود برای خود برداشته و باقی آن را با فلز نقره که بسیار ارزانتر بود مخلوط کرده و تاج را ساخته است.

هر چند ارشمیدس می‌دانست که فلزات گوناگون وزن مخصوص متفاوت دارند، ولی او تا آن لحظه اینطور فکر می‌کرد که مجبور است تاج شاهی را ذوب کند، آنرا به صورت شمش طلا قالب ریزی کند تا بتواند وزن آن را با شمش طلای نابی به همان اندازه مقایسه کند. اما در این روش تاج شاهی از بین می‌رفت، پس او مجبور بود راه دیگری برای این کار بیابد. در آن روز که در خزینه حمام نشسته بود دید که آب خزینه بالاتر آمد و بلافاصله تشخیص داد که بدن او میزان معینی از آب را در خزینه حمام پس زده و جابجا کرده است.

آزمایش و اثبات ناخالصی تاج شاهی (کشفی از رازهای طبیعت)

او با عجله و سراسیمه به خانه بازگشت و شروع به آزمایش عملی این یافته کرد. او چنین اندیشید که اجسام هم اندازه ، مقار آب یکسانی را جابجا می‌کنند، ولی اگر از نظر وزنی به موضوع نگاه کنیم یک شمش نیم کیلویی طلا کوچکتر از یک شمش نقره به همان وزن است (طلا تقریبا دو برابر نقره وزن دارد)، بنابراین باید مقدار کمتری آب را جابجا کند. این فرضیه ارشمیدس بود و آزمایشهای او این فرضیه را اثبات کرد. او برای این کار نیاز به یک ظرف آب و سه وزنه با وزنهای مساوی داشت که این سه وزنه عبارت بودند از تاج شاهی ، هم وزن آن طلای ناب و دوباره هم وزن آن نقره ناب.

او در آزمایش خود تشخیص داد که تاج شاهی میزان بیشتری آب را نسبت به شمش طلای هم وزنش پس می‌راند، ولی این میزان آب کمتر از میزان آبی است که شمش نقره هم وزن آن را جابجا می‌کند. به این ترتیب ثابت شد که تاج شاهی از طلای ناب و خالص ساخته نشده، بلکه جواهر ساز متقلب و خیانتکار آن را از مخلوطی از طلا و نقره ساخته است و به این ترتیب ارشمیدس یکی از چشمگیرترین رازهای طبیعت را کشف کرد. آن هم اینکه می‌توان وزن اجسام سخت را با کمک مقدار آبی که جابجا می‌کنند اندازه گیری کرد. این قانون (وزن مخصوص) را که امروزه به آن چگالی می‌گویند اصل ارشمیدس می‌نامند. حتی امروز هم هنوز پس از 23 قرن بسیاری از دانشمندان در محاسبات خود متکی به این اصل هستند.

فعالیت در حوزه‌های دیگر

ارشمیدس در رشته ریاضیات از ظرفیتهای هوشی بسیار والا و چشمگیری برخوردار بود. او منجنیقهای شگفت آوری برای دفاع از سرزمینهای خود اختراع کرد که بسیار سودمند افتاد. او توانست سطح و حجم جسمهایی مانند کره ، استوانه و مخروط را حساب کند و روش نوینی برای اندازه گیری در دانش ریاضی پدید آورد. همچنین بدست آوردن عدد نیز از کارهای گرانقدر وی است. او کتابهایی درباره خصوصیات و روشهای اندازه گیری اشکال و احجام هندسی از قبیل مخروط ، منحنی حلزونی و خط مارپیچ ، سهمی ، سطح کره «ماده غذایی» و استوانه نوشته ، علاوه بر آن او قوانینی درباره سطح شیب دار، پیچ ، اهرم و مرکز ثقل کشف کرد.

یکی از روشهای نوین ارشمیدس در ریاضیات بدست آوردن عدد بود، وی برای محاسبه عدد پی ، یعنی نسبت محیط دایره به قطر آن روشی بدست داد و ثابت کرد که عدد محصور مابین 7/1 3 و 71/10 3 است، گذشته از آن روشهای مختلف برای تعیین جذر تقریبی اعداد به دست داد و از مطالعه آنها معلوم می‌شود که وی قبل از ریاضیدانان هندی با کسرهای متصل یا مداوم متناوب آشنایی داشته است. در حساب روش غیر عملی و چند عملی یونانیان را که برای نمایش اعداد از علائم متفاوت استفاده می‌کردند، به کنار گذاشت و پیش خود دستگاه شمارشی اختراع کرد که به کمک آن ممکن بود هر عدد بزرگی را بنویسیم و بخوانیم.

دانش تعادل مایعات بوسیله ارشمیدس کشف شد و وی توانست قوانین آنرا برای تعیین وضع تعادل اجسام غوطه ور بکار برد. همچنین برای اولین بار برخی از اصول مکانیک را به وضوح و دقت بیان کرد و قوانین اهرم را کشف کرد.

ارشمیدس و دیگر دانشمندان دوران خود

ارشمیدس در مورد خودش گفته‌ای دارد که با وجود گذشت قرنها جاودان مانده و آن این است: «نقطه اتکایی به من بدهید، من زمین را از جا بلند خواهم کرد». عین همین اظهار به صورت دیگری در متون ادبی زبان یونانی از قول ارشمیدس نقل شده است، اما مفهوم در هر دو صورت یکی است. ارشمیدس هم چون عقاب گوشه گیر و منزوی بود، در جوانی به مصر مسافرت کرد و مدتی در شهر اسکندریه به تحصیل پرداخت و در این شهر دو دوست قدیمی یافت، یکی کونون (این شخص ریاضیدان قابلی بود که ارشمیدس چه از لحاظ فکری و چه از نظر شخصی برای وی احترام بسیار داشت) و دیگری اراتوستن که گر چه ریاضیدان لایقی بود، اما مردی سطحی به شمار می‌رفت که برای خویش احترام خارق العاده‌ای قائل بود.

ارشمیدس با کونون ارتباط و مکاتبه دائمی داشت و قسمت مهم و زیبایی از آثار خویش را در این نامه‌ها با او در میان گذاشت و بعدها که کونون در گذشت، ارشمیدس با دوستی که از شارگردان کونون بود مکاتبه می‌کرد. در سال 1906 ج.ل. هایبرگ مورخ دانشمند و متخصص تاریخ ریاضیات یونانی در شهر قسطنطنیه موفق به کشف مدرک با ارزشی شد.

این مدرک کتابی است به نام قضایای مکانیک و روش آنها که ارشمیدس برای دوست خود اراتوستن فرستاده بود. موضوع این کتاب مقایسه حجم یا سطح نامعلوم شکلی با احجام و سطوح معلوم اشکال دیگر است که بوسیله آن ارشمیدس موفق به تعیین نتیجه مطلوب می‌شد. این روش یکی از عناوین افتخار ارشمیدس است که ما را مجاز می‌دارد که وی را به مفهوم صاحب فکر جدید و امروزی بدانیم، زیرا وی همه چیز و هر چیزی را که استفاده از آن به نحوی ممکن بود بکار می‌برد تا بتواند به مسائلی که ذهن او را مشغول می‌داشتند حمله ور گردد.

دومین نکته‌ای که ما را مجاز می‌دارد که عنوان متجدد به ارشمیدس بدهیم روشهای محاسبه اوست. وی دو هزار سال قبل از اسحاق نیوتن و لایب نیتس موفق به اختراع حساب انتگرال شد و حتی در حل یکی از مسائل خویش نکته‌ای را بکار برد که می‌توان او را از پیش قدمان فکر ایجاد حساب دیفرانسیل دانست.

وداع با دنیا

زندگی ارشمیدس با آرامش کامل می‌گذشت، همچون زندگی هر ریاضیدان دیگری که تأمین کامل داشته باشد و بتواند همه ممکنات هوش و نبوغ خود را به مرحله اجرا در آورد. زمانی که رومیان در سال 212 قبل از میلاد شهر سیراکوز را به تصرف خود در آوردند، سردار رومی مارسلوس دستور داد که هیچ یک از سپاهیانش حق اذیت و آزار و توهین و ضرب و جرح این دانشمند و متفکر مشهور و بزرگ را ندارند، با این وجود ارشمیدس قربانی غلبه رومیان بر شهر سیراکوز شد. او بوسیله یک سرباز مست رومی به قتل رسید و این در حالی بود که در میدان بازار شهر در حال اندیشیدن به یک مسئله ریاضی بود، می‌گویند آخرین کلمات او این بود: دایره‌های مرا خراب نکن. به این ترتیب بود که زندگی ارشمیدس بزرگترین دانشمند تمام دورانها خاتمه پذیرفت، این ریاضیدان بی دفاع 75 ساله در 278 قبل از میلاد به جهان دیگر رفت.

ارشمیدس چه یافته بود؟

چه بود که او را این قدر به هیجان آورد که فراموش کرد قبل از دویدن به سوی خانه لباس هایش را بر تن کند؟

هیرو، پادشاه سیراکوز، از دوستان نزدیک یا شاید از خویشاوندان ارشمیدس، زرگری را مأمور کرده بود تا برایش تاجی از طلای خالص بسازد. وقتی تاج تکمیل شد و به دست پادشاه رسید، تردید داشت که زرگر تمام طلا را به کاربرده باشد. آیا امکان نداشت که زرگر به جای قسمتی از طلایی که به او داده شده بود، از فلز کم ارزش تری مثل نقره یا مس استفاده کرده، و بقیه ی طلایی را که مصرف نشده بود برای خود نگه داشته باشد؟

هر کس می دانست که چگونه طلا را با نقره و مس مخلوط کرده و در این مخلوط ها، حتی وقتی مقادیر زیادی از فلزات دیگر استفاده شود، باز هم رنگ خیره کننده ی طلا باقی می ماند. طلای خالص را طلای 24 عیار می نامند. طلای 14 عیار از 58% طلا و 42% فلزهای دیگر تشکیل شده است. این آلیاژ به فراوانی در جواهرات استفاده می شود، و ظاهر آن با طلای خالص تقریباً هیچ فرقی ندارد.

شاه هیرو، دوست خود ارشمیدس را احضار کرد و از او خواست تا بفهمد آیا واقعاً تاج از طلای خالص است.

ارشمیدس قبلاً برای محاسبه ی حجم جامدهایی که شکلی منظم مثل کره یا استوانه داشتند دستورهای ریاضی ابداع کرده بود. او می دانست که اگر بتواند حجم تاج هیرو را تعیین کند، خواهد فهمید که آیا تاج از طلای خالص درست شده است یا از مخلوطی از طلا با فلزات دیگر.

وقتی پا به خزینه(حمام های عمومی در زمان قدیم) گذاشت و دید که آب از آن سر ریز شد، متوجه شد که حجم آبی که بیرون ریخته است دقیقاً با حجم قسمتی از بدن او که وارد آب شده برابری می کند. اکنون می دانست که چگونه باید حجم هر جسم جامد نامنظمی را محاسبه کند، چه پای خودش باشد و چه تاج پادشاه. اگر او تاج را در ظرفی پر از آب قرار می داد، می توانست حجم آبی را که سرریز می کرد اندازه گیری کند، و این مقدار با حجم تاج برابر بود.

وقتی ارشمیدس این کشف تصادفی را در حمام عمومی کرد، دیگر اندازه گیری حجم تاج نو هیرو دشوار نبود. کافی بود آن را در آب بگذارد و حجم آب جا به جا شده را اندازه گیری کند. هنگامی که پادشاه دریافت حجم تاجش بسیار بیشتر از تاجی است که با طلای خالص ساخته شده، با اعدام زرگر خطاکار حقش را کف دستش گذاشت. تصادفی که منجر به اکتشاف پر برکت ارشمیدس شد، زیاد هم برای زرگر تبرک نداشت.

بدین ترتیب کشف راهی برای اندازه گیری حجم هر جسم جامد، باعث شد ارشمیدس آن قدر، هیجان زده شود که وقتی از حمام بیرون می دود فراموش کند که لباس هایش را جا گذاشته است.